Source code for Orange.regression.mean

import numpy

from Orange.regression import Learner, Model
from Orange.statistics import distribution

__all__ = ["MeanLearner"]

[docs] class MeanLearner(Learner): """ Fit a regression model that returns the average response (class) value. """
[docs] def fit_storage(self, data): """ Construct a :obj:`MeanModel` by computing the mean value of the given data. :param data: data table :type data: :return: regression model, which always returns mean value :rtype: :obj:`MeanModel` """ if not data.domain.has_continuous_class: raise ValueError("regression.MeanLearner expects a domain with a " "(single) numeric variable.") dist = distribution.get_distribution(data, data.domain.class_var) return MeanModel(dist)
# noinspection PyMissingConstructor class MeanModel(Model): """ A regression model that returns the average response (class) value. Instances can be constructed directly, by passing a distribution to the constructor, or by calling the :obj:`MeanLearner`. .. automethod:: __init__ """ def __init__(self, dist, domain=None): """ Construct :obj:`Orange.regression.MeanModel` that always returns the mean value computed from the given distribution. If the distribution is empty, it constructs a model that returns zero. :param dist: domain for the `Table` :type dist: Orange.statistics.distribution.Continuous :return: regression model that returns mean value :rtype: :obj:`MeanModel` """ # Don't call super().__init__ because it will raise an error since # domain is None. self.domain = domain self.dist = dist if dist.any(): self.mean = self.dist.mean() else: self.mean = 0.0 # noinspection PyPep8Naming def predict(self, X): """ Return predictions (that is, the same mean value) for each given instance in `X`. :param X: data for which to make predictions :type X: :obj:`numpy.ndarray` :return: a vector of predictions :rtype: :obj:`numpy.ndarray` """ return numpy.full(len(X), self.mean) def __str__(self): return 'MeanModel({})'.format(self.mean) MeanLearner.__returns__ = MeanModel