import re
import types
import warnings
from collections.abc import Iterable
from typing import Sequence
from datetime import datetime, timedelta, timezone
from numbers import Number, Real, Integral
from math import isnan, floor
from pickle import PickleError
import numpy as np
import pandas
import scipy.sparse as sp
from Orange.data import _variable
from Orange.data.util import redefines_eq_and_hash
from Orange.util import Registry, Reprable, OrangeDeprecationWarning
__all__ = ["Unknown", "MISSING_VALUES", "make_variable", "is_discrete_values",
"Value", "Variable", "ContinuousVariable", "DiscreteVariable",
"StringVariable", "TimeVariable"]
# For storing unknowns
Unknown = ValueUnknown = float("nan")
# For checking for unknowns
MISSING_VALUES = {np.nan, "?", "nan", ".", "", "NA", "~", None}
DISCRETE_MAX_VALUES = 3 # == 2 + nan
MAX_NUM_OF_DECIMALS = 5
# the variable with more than 100 different values should not be StringVariable
DISCRETE_MAX_ALLOWED_VALUES = 100
def make_variable(cls, compute_value, *args):
if compute_value is not None:
return cls(*args, compute_value=compute_value)
else:
# For compatibility with old pickles: remove the second arg if it's
# bool `compute_value` (args[3]) can't be bool, so this should be safe
if len(args) > 2 and isinstance(args[2], bool):
args = args[:2] + args[3:]
return cls(*args)
def is_discrete_values(values):
"""
Return set of uniques if `values` is an iterable of discrete values
else False if non-discrete, or None if indeterminate.
Note
----
Assumes consistent type of items of `values`.
"""
if len(values) == 0:
return None
# If the first few values are, or can be converted to, floats,
# the type is numeric
try:
isinstance(next(iter(values)), Number) or \
[v not in MISSING_VALUES and float(v)
for _, v in zip(range(min(3, len(values))), values)]
except ValueError:
is_numeric = False
max_values = int(round(len(values)**.7))
else:
is_numeric = True
max_values = DISCRETE_MAX_VALUES
# If more than max values => not discrete
unique = set()
for i in values:
unique.add(i)
if (len(unique) > max_values or
len(unique) > DISCRETE_MAX_ALLOWED_VALUES):
return False
# Strip NaN from unique
unique = {i for i in unique
if (not i in MISSING_VALUES and
not (isinstance(i, Number) and np.isnan(i)))}
# All NaNs => indeterminate
if not unique:
return None
# Strings with |values| < max_unique
if not is_numeric:
return unique
# Handle numbers
try:
unique_float = set(map(float, unique))
except ValueError:
# Converting all the values to floats resulted in an error.
# Since the values have enough unique values, they are probably
# string values and discrete.
return unique
# If only values are {0, 1} or {1, 2} (or a subset of those sets) => discrete
return (not (unique_float - {0, 1}) or
not (unique_float - {1, 2})) and unique
[docs]
class Value(float):
"""
The class representing a value. The class is not used to store values but
only to return them in contexts in which we want the value to be accompanied
with the descriptor, for instance to print the symbolic value of discrete
variables.
The class is derived from `float`, with an additional attribute `variable`
which holds the descriptor of type :obj:`Orange.data.Variable`. If the
value continuous or discrete, it is stored as a float. Other types of
values, like strings, are stored in the attribute `value`.
The class overloads the methods for printing out the value:
`variable.repr_val` and `variable.str_val` are used to get a suitable
representation of the value.
Equivalence operator is overloaded as follows:
- unknown values are equal; if one value is unknown and the other is not,
they are different;
- if the value is compared with the string, the value is converted to a
string using `variable.str_val` and the two strings are compared
- if the value is stored in attribute `value`, it is compared with the
given other value
- otherwise, the inherited comparison operator for `float` is called.
Finally, value defines a hash, so values can be put in sets and appear as
keys in dictionaries.
.. attribute:: variable (:obj:`Orange.data.Variable`)
Descriptor; used for printing out and for comparing with strings
.. attribute:: value
Value; the value can be of arbitrary type and is used only for variables
that are neither discrete nor continuous. If `value` is `None`, the
derived `float` value is used.
"""
__slots__ = "variable", "_value"
def __new__(cls, variable, value=Unknown):
"""
Construct a new instance of Value with the given descriptor and value.
If the argument `value` can be converted to float, it is stored as
`float` and the attribute `value` is set to `None`. Otherwise, the
inherited float is set to `Unknown` and the value is held by the
attribute `value`.
:param variable: descriptor
:type variable: Orange.data.Variable
:param value: value
"""
if variable.is_primitive():
if isinstance(variable, DiscreteVariable) and isinstance(value, str):
value = variable.to_val(value)
self = super().__new__(cls, value)
self.variable = variable
self._value = None
else:
isunknown = value == variable.Unknown
self = super().__new__(
cls, np.nan if isunknown else np.finfo(float).min)
self.variable = variable
self._value = value
return self
@staticmethod
def _as_values_primitive(variable, data) -> Sequence['Value']:
assert variable.is_primitive()
_Value = Value
_float_new = float.__new__
res = [Value(variable, np.nan)] * len(data)
for i, v in enumerate(data):
v = _float_new(_Value, v)
v.variable = variable
res[i] = v
return res
@staticmethod
def _as_values_non_primitive(variable, data) -> Sequence['Value']:
assert not variable.is_primitive()
_Value = Value
_float_new = float.__new__
data_arr = np.array(data, dtype=object)
NA = data_arr == variable.Unknown
fdata = np.full(len(data), np.finfo(float).min)
fdata[NA] = np.nan
res = [Value(variable, Variable.Unknown)] * len(data)
for i, (v, fval) in enumerate(zip(data, fdata)):
val = _float_new(_Value, fval)
val.variable = variable
val._value = v
res[i] = val
return res
@staticmethod
def _as_values(variable, data):
"""Equivalent but faster then `[Value(variable, v) for v in data]
"""
if variable.is_primitive():
return Value._as_values_primitive(variable, data)
else:
return Value._as_values_non_primitive(variable, data)
def __init__(self, _, __=Unknown):
# __new__ does the job, pylint: disable=super-init-not-called
pass
def __repr__(self):
return "Value('%s', %s)" % (self.variable.name,
self.variable.repr_val(self))
def __str__(self):
return self.variable.str_val(self)
def __eq__(self, other):
if isinstance(self, Real) and isnan(self):
if isinstance(other, Real):
return isnan(other)
else:
return other in self.variable.unknown_str
if isinstance(other, str):
return self.variable.str_val(self) == other
if isinstance(other, Value):
return self.value == other.value
return super().__eq__(other)
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
if self.variable.is_primitive():
if isinstance(other, str):
return super().__lt__(self.variable.to_val(other))
else:
return super().__lt__(other)
else:
if isinstance(other, str):
return self.value < other
else:
return self.value < other.value
def __le__(self, other):
return self.__lt__(other) or self.__eq__(other)
def __gt__(self, other):
return not self.__le__(other)
def __ge__(self, other):
return not self.__lt__(other)
def __contains__(self, other):
if (self._value is not None
and isinstance(self._value, str)
and isinstance(other, str)):
return other in self._value
raise TypeError("invalid operation on Value()")
def __hash__(self):
if self.variable.is_discrete:
# It is not possible to hash the id and the domain value to the
# same number as required by __eq__.
# hash(1)
# == hash(Value(DiscreteVariable("var", ["red", "green", "blue"]), 1))
# == hash("green")
# User should hash directly ids or domain values instead.
raise TypeError("unhashable type - cannot hash values of discrete variables!")
if self._value is None:
return super().__hash__()
else:
return hash(self._value)
@property
def value(self):
if self.variable.is_discrete:
return Unknown if isnan(self) else self.variable.values[int(self)]
if self.variable.is_string:
return self._value
return float(self)
def __getnewargs__(self):
return self.variable, float(self)
def __getstate__(self):
return dict(value=getattr(self, '_value', None))
def __setstate__(self, state):
# defined in __new__, pylint: disable=attribute-defined-outside-init
self._value = state.get('value', None)
class VariableMeta(Registry):
pass
class _predicatedescriptor(property):
"""
A property that behaves as a class method if accessed via a class
>>> class A:
... foo = False
... @_predicatedescriptor
... def is_foo(self):
... return self.foo
...
>>> a = A()
>>> a.is_foo
False
>>> A.is_foo(a)
False
"""
def __get__(self, instance, objtype=None):
if instance is None:
return self.fget
else:
return super().__get__(instance, objtype)
[docs]
class Variable(Reprable, metaclass=VariableMeta):
"""
The base class for variable descriptors contains the variable's
name and some basic properties.
.. attribute:: name
The name of the variable.
.. attribute:: unknown_str
A set of values that represent unknowns in conversion from textual
formats. Default is `{"?", ".", "", "NA", "~", None}`.
.. attribute:: compute_value
A function for computing the variable's value when converting from
another domain which does not contain this variable. The function will
be called with a data set (`Orange.data.Table`) and has to return
an array of computed values for all its instances. The base class
defines a static method `compute_value`, which returns `Unknown`.
Non-primitive variables must redefine it to return `None`.
.. attribute:: sparse
A flag about sparsity of the variable. When set, the variable suggests
it should be stored in a sparse matrix.
.. attribute:: source_variable
An optional descriptor of the source variable - if any - from which
this variable is derived and computed via :obj:`compute_value`.
.. attribute:: attributes
A dictionary with user-defined attributes of the variable
"""
Unknown = ValueUnknown
def __init__(self, name="", compute_value=None, *, sparse=False):
"""
Construct a variable descriptor.
"""
if not name:
warnings.warn("Variable must have a name", OrangeDeprecationWarning,
stacklevel=3)
self._name = name
if compute_value is not None \
and not isinstance(compute_value, (types.BuiltinFunctionType,
types.FunctionType)) \
and not redefines_eq_and_hash(compute_value) \
and not type(compute_value).__dict__.get("InheritEq", False):
warnings.warn(f"{type(compute_value).__name__} should define "
"__eq__ and __hash__ to be used for compute_value\n"
"or set InheritEq = True if inherited methods suffice",
stacklevel=3)
self._compute_value = compute_value
self.unknown_str = MISSING_VALUES
self.source_variable = None
self.sparse = sparse
self.attributes = {}
@property
def name(self):
return self._name
def make_proxy(self):
"""
Copy the variable and set the master to `self.master` or to `self`.
:return: copy of self
:rtype: Variable
"""
var = self.__class__(self.name)
var.__dict__.update(self.__dict__)
var.attributes = dict(self.attributes)
return var
def __eq__(self, other):
if type(self) is not type(other):
return False
var1 = self._get_identical_source(self)
var2 = self._get_identical_source(other)
# pylint: disable=protected-access
return (
self.name == other.name
and var1.name == var2.name
and var1._compute_value == var2._compute_value
)
def __hash__(self):
var = self._get_identical_source(self)
return hash((self.name, var.name, type(self), var._compute_value))
@staticmethod
def _get_identical_source(var):
# pylint: disable=protected-access,import-outside-toplevel
from Orange.preprocess.transformation import Identity
while isinstance(var._compute_value, Identity):
var = var._compute_value.variable
return var
@classmethod
def make(cls, name, *args, **kwargs):
"""
Return an existing continuous variable with the given name, or
construct and return a new one.
"""
return cls(name, *args, **kwargs)
@classmethod
def _clear_cache(cls):
warnings.warn(
"_clear_cache is no longer needed and thus deprecated")
@staticmethod
def _clear_all_caches():
warnings.warn(
"_clear_all_caches is no longer needed and thus deprecated")
[docs]
@classmethod
def is_primitive(cls, var=None):
"""
`True` if the variable's values are stored as floats.
Non-primitive variables can appear in the data only as meta attributes.
"""
to_check = cls if var is None else type(var)
return issubclass(to_check, (DiscreteVariable, ContinuousVariable))
@_predicatedescriptor
def is_discrete(self):
return isinstance(self, DiscreteVariable)
@_predicatedescriptor
def is_continuous(self):
return isinstance(self, ContinuousVariable)
@_predicatedescriptor
def is_string(self):
return isinstance(self, StringVariable)
@_predicatedescriptor
def is_time(self):
return isinstance(self, TimeVariable)
@staticmethod
def repr_val(val):
"""
Return a textual representation of variable's value `val`. Argument
`val` must be a float (for primitive variables) or an arbitrary
Python object (for non-primitives).
Derived classes must overload the function.
"""
raise RuntimeError("variable descriptors must overload repr_val()")
str_val = repr_val
[docs]
def to_val(self, s):
"""
Convert the given argument to a value of the variable. The
argument can be a string, a number or `None`. For primitive variables,
the base class provides a method that returns
:obj:`~Orange.data.Unknown` if `s` is found in
:obj:`~Orange.data.Variable.unknown_str`, and raises an exception
otherwise. For non-primitive variables it returns the argument itself.
Derived classes of primitive variables must overload the function.
:param s: value, represented as a number, string or `None`
:type s: str, float or None
:rtype: float or object
"""
if not self.is_primitive():
return s
if s in self.unknown_str:
return Unknown
raise RuntimeError(
"primitive variable descriptors must overload to_val()")
[docs]
def val_from_str_add(self, s):
"""
Convert the given string to a value of the variable. The method
is similar to :obj:`to_val` except that it only accepts strings and
that it adds new values to the variable's domain where applicable.
The base class method calls `to_val`.
:param s: symbolic representation of the value
:type s: str
:rtype: float or object
"""
return self.to_val(s)
def __str__(self):
return self.name
@property
def compute_value(self):
return self._compute_value
def __reduce__(self):
if not self.name:
raise PickleError("Variables without names cannot be pickled")
# Use make to unpickle variables.
return make_variable, (self.__class__, self._compute_value, self.name), self.__dict__
_CopyComputeValue = object()
def copy(self, compute_value=_CopyComputeValue, *, name=None, **kwargs):
if compute_value is self._CopyComputeValue:
compute_value = self.compute_value
var = type(self)(name=name or self.name,
compute_value=compute_value,
sparse=self.sparse, **kwargs)
var.attributes = dict(self.attributes)
return var
def renamed(self, new_name):
# prevent cyclic import, pylint: disable=import-outside-toplevel
from Orange.preprocess.transformation import Identity
return self.copy(name=new_name, compute_value=Identity(variable=self))
del _predicatedescriptor
[docs]
class ContinuousVariable(Variable):
"""
Descriptor for continuous variables.
.. attribute:: number_of_decimals
The number of decimals when the value is printed out (default: 3).
.. attribute:: adjust_decimals
A flag regulating whether the `number_of_decimals` is being adjusted
by :obj:`to_val`.
The value of `number_of_decimals` is set to 3 and `adjust_decimals`
is set to 2. When :obj:`val_from_str_add` is called for the first
time with a string as an argument, `number_of_decimals` is set to the
number of decimals in the string and `adjust_decimals` is set to 1.
In the subsequent calls of `to_val`, the nubmer of decimals is
increased if the string argument has a larger number of decimals.
If the `number_of_decimals` is set manually, `adjust_decimals` is
set to 0 to prevent changes by `to_val`.
"""
TYPE_HEADERS = ('continuous', 'c', 'numeric', 'n')
def __init__(self, name="", number_of_decimals=None, compute_value=None, *, sparse=False):
"""
Construct a new continuous variable. The number of decimals is set to
three, but adjusted at the first call of :obj:`to_val`.
"""
super().__init__(name, compute_value, sparse=sparse)
self._max_round_diff = 0
self.number_of_decimals = number_of_decimals
@property
def number_of_decimals(self):
return self._number_of_decimals
@property
def format_str(self):
return self._format_str
@format_str.setter
def format_str(self, value):
self._format_str = value
# noinspection PyAttributeOutsideInit
@number_of_decimals.setter
def number_of_decimals(self, x):
if x is None:
self._number_of_decimals = 3
self.adjust_decimals = 2
self._format_str = "%g"
return
self._number_of_decimals = x
self._max_round_diff = 10 ** (-x - 6)
self.adjust_decimals = 0
if self._number_of_decimals <= MAX_NUM_OF_DECIMALS:
self._format_str = "%.{}f".format(self.number_of_decimals)
else:
self._format_str = "%g"
[docs]
def to_val(self, s):
"""
Convert a value, given as an instance of an arbitrary type, to a float.
"""
if s in self.unknown_str:
return Unknown
return float(s)
[docs]
def val_from_str_add(self, s):
"""
Convert a value from a string and adjust the number of decimals if
`adjust_decimals` is non-zero.
"""
return _variable.val_from_str_add_cont(self, s)
def repr_val(self, val: float):
"""
Return the value as a string with the prescribed number of decimals.
"""
# Table value can't be inf, but repr_val can be used to print any float
if not np.isfinite(val):
return "?"
if self.format_str != "%g" \
and abs(round(val, self._number_of_decimals) - val) \
> self._max_round_diff:
return f"{val:.{self._number_of_decimals + 2}f}"
return self._format_str % val
str_val = repr_val
def copy(self, compute_value=Variable._CopyComputeValue,
*, name=None, **kwargs):
# pylint understand not that `var` is `DiscreteVariable`:
# pylint: disable=protected-access
number_of_decimals = kwargs.pop("number_of_decimals", None)
var = super().copy(compute_value=compute_value, name=name, **kwargs)
if number_of_decimals is not None:
var.number_of_decimals = number_of_decimals
else:
var._number_of_decimals = self._number_of_decimals
var._max_round_diff = self._max_round_diff
var.adjust_decimals = self.adjust_decimals
var.format_str = self._format_str
return var
TupleList = tuple # backward compatibility (for pickled table)
[docs]
class DiscreteVariable(Variable):
"""
Descriptor for symbolic, discrete variables. Values of discrete variables
are stored as floats; the numbers corresponds to indices in the list of
values.
.. attribute:: values
A list of variable's values.
"""
TYPE_HEADERS = ('discrete', 'd', 'categorical')
presorted_values = []
def __init__(
self, name="", values=(), compute_value=None, *, sparse=False
):
""" Construct a discrete variable descriptor with the given values. """
values = tuple(values) # some people (including me) pass a generator
if not all(isinstance(value, str) for value in values):
raise TypeError("values of DiscreteVariables must be strings")
super().__init__(name, compute_value, sparse=sparse)
self._values = values
self._value_index = {value: i for i, value in enumerate(values)}
@property
def values(self):
return self._values
def get_mapping_from(self, other):
return np.array(
[self._value_index.get(value, np.nan) for value in other.values],
dtype=float)
def get_mapper_from(self, other):
mapping = self.get_mapping_from(other)
if not mapping.size:
# Nans in data are temporarily replaced with 0, mapped and changed
# back to nans. This would fail is mapping[0] is out of range.
mapping = np.array([np.nan])
def mapper(value, col_idx=None):
# In-place mapping
if col_idx is not None:
if sp.issparse(value) and mapping[0] != 0:
raise ValueError(
"In-place mapping of sparse matrices must map 0 to 0")
# CSR requires mapping of non-contiguous area
if sp.isspmatrix_csr(value):
col = value.indices == col_idx
nans = np.isnan(value.data) * col
value.data[nans] = 0
value.data[col] = mapping[value.data[col].astype(int)]
value.data[nans] = np.nan
return None
# Dense and CSC map a contiguous area
if isinstance(value, np.ndarray) and value.ndim == 2:
col = value[:, col_idx]
elif sp.isspmatrix_csc(value):
col = value.data[value.indptr[col_idx]
:value.indptr[col_idx + 1]]
else:
raise ValueError(
"In-place column mapping requires a 2d array or"
"a csc or csr matrix.")
nans = np.isnan(col)
col[nans] = 0
col[:] = mapping[col.astype(int)]
col[nans] = np.nan
return None
# Mapping into a copy
if isinstance(value, (int, float)):
return value if np.isnan(value) else mapping[int(value)]
if isinstance(value, str):
return mapping[other.values.index(value)]
if isinstance(value, np.ndarray):
if not (value.ndim == 1
or value.ndim != 2 and min(value.shape) != 1):
raise ValueError(
f"Column mapping can't map {value.ndim}-d objects")
if value.dtype == object:
value = value.astype(float) # this happens with metas
try:
nans = np.isnan(value)
except TypeError: # suppose it's already an integer type
return mapping[value]
value = value.astype(int)
value[nans] = 0
value = mapping[value]
value[nans] = np.nan
return value
if sp.issparse(value):
if min(value.shape) != 1:
raise ValueError("Column mapping can't map "
f"{value.ndim}-dimensional objects")
if mapping[0] != 0 and not np.isnan(mapping[0]):
return mapper(np.array(value.todense()).flatten())
value = value.copy()
value.data = mapper(value.data)
return value
if isinstance(value, Iterable):
return type(value)(val if np.isnan(val) else mapping[int(val)]
for val in value)
raise ValueError(
f"invalid type for value(s): {type(value).__name__}")
return mapper
[docs]
def to_val(self, s):
"""
Convert the given argument to a value of the variable (`float`).
If the argument is numeric, its value is returned without checking
whether it is integer and within bounds. `Unknown` is returned if the
argument is one of the representations for unknown values. Otherwise,
the argument must be a string and the method returns its index in
:obj:`values`.
:param s: values, represented as a number, string or `None`
:rtype: float
"""
if s is None:
return ValueUnknown
if isinstance(s, Integral):
return s
if isinstance(s, Real):
return s if isnan(s) else floor(s + 0.25)
if s in self.unknown_str:
return ValueUnknown
if not isinstance(s, str):
raise TypeError('Cannot convert {} to value of "{}"'.format(
type(s).__name__, self.name))
if s not in self._value_index:
raise ValueError(f"Value {s} does not exist")
return self._value_index[s]
def add_value(self, s):
""" Add a value `s` to the list of values.
"""
if not isinstance(s, str):
raise TypeError("values of DiscreteVariables must be strings")
if s in self._value_index:
return
self._value_index[s] = len(self.values)
self._values += (s, )
[docs]
def val_from_str_add(self, s):
"""
Similar to :obj:`to_val`, except that it accepts only strings and that
it adds the value to the list if it does not exist yet.
:param s: symbolic representation of the value
:type s: str
:rtype: float
"""
s = str(s) if s is not None else s
if s in self.unknown_str:
return ValueUnknown
val = self._value_index.get(s)
if val is None:
self.add_value(s)
val = len(self.values) - 1
return val
def repr_val(self, val):
"""
Return a textual representation of the value (`self.values[int(val)]`)
or "?" if the value is unknown.
:param val: value
:type val: float (should be whole number)
:rtype: str
"""
if isnan(val):
return "?"
return '{}'.format(self.values[int(val)])
str_val = repr_val
def __reduce__(self):
if not self.name:
raise PickleError("Variables without names cannot be pickled")
__dict__ = dict(self.__dict__)
__dict__.pop("_values")
return (
make_variable,
(self.__class__, self._compute_value, self.name, self.values),
__dict__
)
def copy(self, compute_value=Variable._CopyComputeValue,
*, name=None, values=None, **_):
# pylint: disable=arguments-differ
if values is not None and len(values) != len(self.values):
raise ValueError(
"number of values must match the number of original values")
return super().copy(compute_value=compute_value, name=name,
values=values or self.values)
[docs]
class StringVariable(Variable):
"""
Descriptor for string variables. String variables can only appear as
meta attributes.
"""
Unknown = ""
TYPE_HEADERS = ('string', 's', 'text')
[docs]
def to_val(self, s):
"""
Return the value as a string. If it is already a string, the same
object is returned.
"""
if s is None:
return ""
if isinstance(s, str):
return s
return str(s)
val_from_str_add = to_val
[docs]
@staticmethod
def str_val(val):
"""Return a string representation of the value."""
if isinstance(val, str) and val == "":
return "?"
if isinstance(val, Value):
if not val.value:
return "?"
val = val.value
if pandas.isnull(val):
return "?"
return str(val)
def repr_val(self, val):
"""Return a string representation of the value."""
return '"{}"'.format(self.str_val(val))
[docs]
class TimeVariable(ContinuousVariable):
"""
TimeVariable is a continuous variable with Unix epoch
(1970-01-01 00:00:00+0000) as the origin (0.0). Later dates are positive
real numbers (equivalent to Unix timestamp, with microseconds in the
fraction part), and the dates before it map to the negative real numbers.
Unfortunately due to limitation of Python datetime, only dates
with year >= 1 (A.D.) are supported.
If time is specified without a date, Unix epoch is assumed.
If time is specified without an UTC offset, localtime is assumed.
"""
_all_vars = {}
TYPE_HEADERS = ('time', 't')
UNIX_EPOCH = datetime(1970, 1, 1)
_ISO_FORMATS = (
# have_date, have_time, format_str
# in order of decreased probability
(1, 1, '%Y-%m-%d %H:%M:%S%z'),
(1, 1, '%Y-%m-%d %H:%M:%S'),
(1, 1, '%Y-%m-%d %H:%M'),
(1, 1, '%Y-%m-%dT%H:%M:%S%z'),
(1, 1, '%Y-%m-%dT%H:%M:%S'),
(1, 0, '%Y-%m-%d'),
(1, 1, '%Y-%m-%d %H:%M:%S.%f'),
(1, 1, '%Y-%m-%dT%H:%M:%S.%f'),
(1, 1, '%Y-%m-%d %H:%M:%S.%f%z'),
(1, 1, '%Y-%m-%dT%H:%M:%S.%f%z'),
(1, 1, '%Y%m%dT%H%M%S%z'),
(1, 1, '%Y%m%d%H%M%S%z'),
(0, 1, '%H:%M:%S.%f'),
(0, 1, '%H:%M:%S'),
(0, 1, '%H:%M'),
# These parse as continuous features (plain numbers)
(1, 1, '%Y%m%dT%H%M%S'),
(1, 1, '%Y%m%d%H%M%S'),
(1, 0, '%Y%m%d'),
(1, 0, '%Y%j'),
(1, 0, '%Y'),
(0, 1, '%H%M%S.%f'),
# BUG: In Python as in C, %j doesn't necessitate 0-padding,
# so these two lines must be in this order
(1, 0, '%Y-%m'),
(1, 0, '%Y-%j'),
)
# Order in which `_ISO_FORMATS` are tried. Must never change order of
# last 2 items. Only modified via assignment in `parse`.
__ISO_FORMATS_PROBE_SEQ = list(range(len(_ISO_FORMATS)))
# The regex that matches all above formats
REGEX = (r'^('
r'\d{1,4}-\d{2}-\d{2}([ T]\d{2}:\d{2}(:\d{2}(\.\d+)?([+-]\d{4})?)?)?|'
r'\d{1,4}\d{2}\d{2}(T?\d{2}\d{2}\d{2}([+-]\d{4})?)?|'
r'\d{2}:\d{2}(:\d{2}(\.\d+)?)?|'
r'\d{2}\d{2}\d{2}\.\d+|'
r'\d{1,4}(-?\d{2,3})?'
r')$')
ADDITIONAL_FORMATS = {
"2021-11-25": (("%Y-%m-%d",), 1, 0),
"25.11.2021": (("%d.%m.%Y", "%d. %m. %Y"), 1, 0),
"25.11.21": (("%d.%m.%y", "%d. %m. %y"), 1, 0),
"11/25/2021": (("%m/%d/%Y",), 1, 0),
"11/25/21": (("%m/%d/%y",), 1, 0),
"20211125": (("%Y%m%d",), 1, 0),
# it would be too many options if we also include all time formats with
# with lengths up to minutes, up to seconds and up to milliseconds,
# joining all tree options under 00:00:00
"2021-11-25 00:00:00": (
(
"%Y-%m-%d %H:%M",
"%Y-%m-%d %H:%M:%S",
"%Y-%m-%d %H:%M:%S.%f",
# times with timezone offsets
"%Y-%m-%d %H:%M%z",
"%Y-%m-%d %H:%M:%S%z",
"%Y-%m-%d %H:%M:%S.%f%z",
),
1,
1,
),
"25.11.2021 00:00:00": (
(
"%d.%m.%Y %H:%M",
"%d. %m. %Y %H:%M",
"%d.%m.%Y %H:%M:%S",
"%d. %m. %Y %H:%M:%S",
"%d.%m.%Y %H:%M:%S.%f",
"%d. %m. %Y %H:%M:%S.%f",
),
1,
1,
),
"25.11.21 00:00:00": (
(
"%d.%m.%y %H:%M",
"%d. %m. %y %H:%M",
"%d.%m.%y %H:%M:%S",
"%d. %m. %y %H:%M:%S",
"%d.%m.%y %H:%M:%S.%f",
"%d. %m. %y %H:%M:%S.%f",
),
1,
1,
),
"11/25/2021 00:00:00": (
(
"%m/%d/%Y %H:%M",
"%m/%d/%Y %H:%M:%S",
"%m/%d/%Y %H:%M:%S.%f",
),
1,
1,
),
"11/25/21 00:00:00": (
(
"%m/%d/%y %H:%M",
"%m/%d/%y %H:%M:%S",
"%m/%d/%y %H:%M:%S.%f",
),
1,
1,
),
"20211125000000": (("%Y%m%d%H%M", "%Y%m%d%H%M%S", "%Y%m%d%H%M%S.%f"), 1, 1),
"00:00:00": (("%H:%M", "%H:%M:%S", "%H:%M:%S.%f"), 0, 1),
"000000": (("%H%M", "%H%M%S", "%H%M%S.%f"), 0, 1),
"2021": (("%Y",), 1, 0),
"11-25": (("%m-%d",), 1, 0),
"25.11.": (("%d.%m.", "%d. %m."), 1, 0),
"11/25": (("%m/%d",), 1, 0),
"1125": (("%m%d",), 1, 0),
}
class InvalidDateTimeFormatError(ValueError):
def __init__(self, date_string):
super().__init__(
f"Invalid datetime format '{date_string}'. Only ISO 8601 supported."
)
_matches_iso_format = re.compile(REGEX).match
# If parsed datetime values provide an offset or timzone, it is used for display.
# If not all values have the same offset, +0000 (=UTC) timezone is used
_timezone = None
def __init__(self, *args, have_date=0, have_time=0, **kwargs):
super().__init__(*args, **kwargs)
self.have_date = have_date
self.have_time = have_time
@property
def timezone(self):
if self._timezone is None or self._timezone == "different timezones":
return timezone.utc
else:
return self._timezone
@timezone.setter
def timezone(self, tz):
"""
Set timezone value:
- if self._timezone is None set it to new timezone
- if current timezone is different that new indicate that TimeVariable
have two date-times with different timezones
- if timezones are same keep it
"""
if self._timezone is None:
self._timezone = tz
elif tz != self.timezone:
self._timezone = "different timezones"
def copy(self, compute_value=Variable._CopyComputeValue, *, name=None, **_):
return super().copy(compute_value=compute_value, name=name,
have_date=self.have_date, have_time=self.have_time)
@staticmethod
def _tzre_sub(s, _subtz=re.compile(r'([+-])(\d\d):(\d\d)$').sub):
# Replace +ZZ:ZZ with ISO-compatible +ZZZZ, or strip +0000
return s[:-6] if s.endswith(('+00:00', '-00:00')) else _subtz(r'\1\2\3', s)
def repr_val(self, val):
if isnan(val):
return '?'
if not self.have_date and not self.have_time:
# The time is relative, unitless. The value is absolute.
return str(val.value) if isinstance(val, Value) else str(val)
# If you know how to simplify this, be my guest
# first, round to 6 decimals. By skipping this, you risk that
# microseconds would be rounded to 1_000_000 two lines later
val = round(val, 6)
seconds = int(val)
# Rounding is needed to avoid rounding down; it will never be rounded
# to 1_000_000 because of the round we have above
microseconds = int(round((val - seconds) * 1e6))
# If you know how to simplify this, be my guest
if val < 0:
if microseconds:
seconds, microseconds = seconds - 1, int(1e6) + microseconds
date = datetime.fromtimestamp(0, tz=self.timezone) + timedelta(seconds=seconds)
else:
date = datetime.fromtimestamp(seconds, tz=self.timezone)
date = str(date.replace(microsecond=microseconds))
if self.have_date and not self.have_time:
date = date.split()[0]
elif not self.have_date and self.have_time:
date = date.split()[1]
date = self._tzre_sub(date)
return date
str_val = repr_val
[docs]
def parse(self, datestr):
"""
Return `datestr`, a datetime provided in one of ISO 8601 formats,
parsed as a real number. Value 0 marks the Unix epoch, positive values
are the dates after it, negative before.
If date is unspecified, epoch date is assumed.
If time is unspecified, 00:00:00.0 is assumed.
If timezone is unspecified, local time is assumed.
"""
if datestr in MISSING_VALUES:
return Unknown
datestr = datestr.strip().rstrip('Z')
datestr = self._tzre_sub(datestr)
if not self._matches_iso_format(datestr):
try:
# If it is a number, assume it is a unix timestamp
value = float(datestr)
self.have_date = self.have_time = 1
return value
except ValueError:
raise self.InvalidDateTimeFormatError(datestr)
try_order = self.__ISO_FORMATS_PROBE_SEQ
for i, (have_date, have_time, fmt) in enumerate(
map(self._ISO_FORMATS.__getitem__, try_order)):
try:
dt = datetime.strptime(datestr, fmt)
except ValueError:
continue
else:
# Pop this most-recently-used format index to front,
# excluding last 2
if 0 < i < len(try_order) - 2:
try_order = try_order.copy()
try_order[i], try_order[0] = try_order[0], try_order[i]
TimeVariable.__ISO_FORMATS_PROBE_SEQ = try_order
self.have_date |= have_date
self.have_time |= have_time
if not have_date:
dt = dt.replace(self.UNIX_EPOCH.year,
self.UNIX_EPOCH.month,
self.UNIX_EPOCH.day)
break
else:
raise self.InvalidDateTimeFormatError(datestr)
offset = dt.utcoffset()
self.timezone = timezone(offset) if offset is not None else None
# Convert time to UTC timezone. In dates without timezone,
# localtime is assumed. See also:
# https://docs.python.org/3.4/library/datetime.html#datetime.datetime.timestamp
if dt.tzinfo:
dt -= dt.utcoffset()
dt = dt.replace(tzinfo=timezone.utc)
# Unix epoch is the origin, older dates are negative
try:
return dt.timestamp()
except OverflowError:
return -(self.UNIX_EPOCH - dt).total_seconds()
def parse_exact_iso(self, datestr):
"""
This function is a meta function to `parse` function. It checks
whether the date is of the iso format - it does not accept float-like
date.
"""
if not self._matches_iso_format(datestr):
raise self.InvalidDateTimeFormatError(datestr)
return self.parse(datestr)
def to_val(self, s):
"""
Convert a value, given as an instance of an arbitrary type, to a float.
"""
if isinstance(s, str):
return self.parse(s)
else:
return super().to_val(s)