Source code for Orange.data.sql.table

"""
Support for example tables wrapping data stored on a PostgreSQL server.
"""
import contextlib
import functools
import logging
import threading
import warnings
from contextlib import contextmanager
from itertools import islice
from time import strftime

import numpy as np
from Orange.data import (
    Table, Domain, Value, Instance, filter)
from Orange.data.sql import filter as sql_filter
from Orange.data.sql.backend import Backend
from Orange.data.sql.backend.base import TableDesc, BackendError

LARGE_TABLE = 100000
AUTO_DL_LIMIT = 10000
DEFAULT_SAMPLE_TIME = 1
sql_log = logging.getLogger('sql_log')
sql_log.debug("Logging started: {}".format(strftime("%Y-%m-%d %H:%M:%S")))


[docs] class SqlTable(Table): table_name = None domain = None row_filters = ()
[docs] def __new__(cls, *args, **kwargs): # We do not (yet) need the magic of the Table.__new__, so we call it # with no parameters. return super().__new__(cls)
[docs] def __init__( self, connection_params, table_or_sql, backend=None, type_hints=None, inspect_values=False): """ Create a new proxy for sql table. To create a new SqlTable, specify the connection parameters for psycopg2 and the name of the table/sql query used to fetch the data. table = SqlTable('database_name', 'table_name') table = SqlTable('database_name', 'SELECT * FROM table') For complex configurations, dictionary of connection parameters can be used instead of the database name. For documentation about connection parameters, see: http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PARAMKEYWORDS Data domain is inferred from the columns of the table/query. The (very quick) default setting is to treat all numeric columns as continuous variables and everything else as strings and placed among meta attributes. If inspect_values parameter is set to True, all column values are inspected and int/string columns with less than 21 values are intepreted as discrete features. Domains can be constructed by the caller and passed in type_hints parameter. Variables from the domain are used for the columns with the matching names; for columns without the matching name in the domain, types are inferred as described above. """ if isinstance(connection_params, str): connection_params = dict(database=connection_params) if backend is None: for backend in Backend.available_backends(): try: self.backend = backend(connection_params) break except BackendError: pass else: raise ValueError("No backend could connect to server") else: self.backend = backend(connection_params) if table_or_sql is not None: if isinstance(table_or_sql, TableDesc): table = table_or_sql.sql elif "select" in table_or_sql.lower(): table = "(%s) as my_table" % table_or_sql.strip("; ") else: table = self.backend.quote_identifier(table_or_sql) self.table_name = table self.domain = self.get_domain(type_hints, inspect_values) self.name = table
@property def connection_params(self): warnings.warn("Use backend.connection_params", DeprecationWarning) return self.backend.connection_params def get_domain(self, type_hints=None, inspect_values=False): table_name = self.table_name if type_hints is None: type_hints = Domain([]) inspect_table = table_name if inspect_values else None attrs, class_vars, metas = [], [], [] for field_name, *field_metadata in self.backend.get_fields(table_name): var = self.backend.create_variable(field_name, field_metadata, type_hints, inspect_table) if var.is_string: metas.append(var) else: if var in type_hints.class_vars: class_vars.append(var) elif var in type_hints.metas: metas.append(var) else: attrs.append(var) return Domain(attrs, class_vars, metas)
[docs] def __getitem__(self, key): """ Indexing of SqlTable is performed in the following way: If a single row is requested, it is fetched from the database and returned as a SqlRowInstance. A new SqlTable with appropriate filters is constructed and returned otherwise. """ if isinstance(key, int): # one row return self._fetch_row(key) if not isinstance(key, tuple): # row filter key = (key, Ellipsis) if len(key) != 2: raise IndexError("Table indices must be one- or two-dimensional") row_idx, col_idx = key if isinstance(row_idx, int): try: col_idx = self.domain.index(col_idx) var = self.domain[col_idx] return Value( var, next(self._query([var], rows=[row_idx]))[0] ) except TypeError: pass elif not (row_idx is Ellipsis or row_idx == slice(None)): # TODO if row_idx specify multiple rows, one of the following must # happen # - the new table remembers which rows are selected (implement # table.limit_rows and whatever else is necessary) # - return an ordinary (non-SQL) Table # - raise an exception raise NotImplementedError("Row indices must be integers.") # multiple rows OR single row but multiple columns: # construct a new table table = self.copy() table.domain = self.domain.select_columns(col_idx) # table.limit_rows(row_idx) return table
@functools.lru_cache(maxsize=128) def _fetch_row(self, row_index): attributes = self.domain.variables + self.domain.metas rows = [row_index] values = list(self._query(attributes, rows=rows)) if not values: raise IndexError('Could not retrieve row {} from table {}'.format( row_index, self.name)) return Instance(self.domain, values[0])
[docs] def __iter__(self): """ Iterating through the rows executes the query using a cursor and then yields resulting rows as SqlRowInstances as they are requested. """ attributes = self.domain.variables + self.domain.metas for row in self._query(attributes): yield Instance(self.domain, row)
def _query(self, attributes=None, filters=(), rows=None): if attributes is not None: fields = [] for attr in attributes: assert hasattr(attr, 'to_sql'), \ "Cannot use ordinary attributes with sql backend" field_str = '(%s) AS "%s"' % (attr.to_sql(), attr.name) fields.append(field_str) if not fields: raise ValueError("No fields selected.") else: fields = ["*"] filters = [f.to_sql() for f in filters] offset = limit = None if rows is not None: if isinstance(rows, slice): offset = rows.start or 0 if rows.stop is not None: limit = rows.stop - offset else: rows = list(rows) offset, stop = min(rows), max(rows) limit = stop - offset + 1 # TODO: this returns all rows between min(rows) and max(rows): fix! query = self._sql_query(fields, filters, offset=offset, limit=limit) with self.backend.execute_sql_query(query) as cur: while True: row = cur.fetchone() if row is None: break yield row
[docs] def copy(self): """Return a copy of the SqlTable""" table = SqlTable.__new__(SqlTable) table.backend = self.backend table.domain = self.domain table.row_filters = self.row_filters table.table_name = self.table_name table.name = self.name return table
[docs] def __bool__(self): """Return True if the SqlTable is not empty.""" query = self._sql_query(["1"], limit=1) with self.backend.execute_sql_query(query) as cur: return cur.fetchone() is not None
_cached__len__ = None
[docs] def __len__(self): """ Return number of rows in the table. The value is cached so it is computed only the first time the length is requested. """ if self._cached__len__ is None: return self._count_rows() return self._cached__len__
def _count_rows(self): query = self._sql_query(["COUNT(*)"]) with self.backend.execute_sql_query(query) as cur: self._cached__len__ = cur.fetchone()[0] return self._cached__len__ def approx_len(self, get_exact=False): if self._cached__len__ is not None: return self._cached__len__ approx_len = None try: query = self._sql_query(["*"]) approx_len = self.backend.count_approx(query) if get_exact: threading.Thread(target=len, args=(self,)).start() except NotImplementedError: pass if approx_len is None: approx_len = len(self) return approx_len _X = None _Y = None _metas = None _W = None _ids = None
[docs] def download_data(self, limit=None, partial=False): """Download SQL data and store it in memory as numpy matrices.""" if limit and not partial and self.approx_len() > limit: raise ValueError("Too many rows to download the data into memory.") X = [np.empty((0, len(self.domain.attributes)))] Y = [np.empty((0, len(self.domain.class_vars)))] metas = [np.empty((0, len(self.domain.metas)))] for row in islice(self, limit): X.append(row._x) Y.append(row._y) metas.append(row._metas) self._X = np.vstack(X).astype(np.float64) self._Y = np.vstack(Y).astype(np.float64) self._metas = np.vstack(metas).astype(object) self._W = np.empty((self._X.shape[0], 0)) self._init_ids(self) if not partial or limit and self._X.shape[0] < limit: self._cached__len__ = self._X.shape[0]
@property def X(self): """Numpy array with attribute values.""" if self._X is None: self.download_data(AUTO_DL_LIMIT) return self._X @property def Y(self): """Numpy array with class values.""" if self._Y is None: self.download_data(AUTO_DL_LIMIT) return self._Y @property def metas(self): """Numpy array with class values.""" if self._metas is None: self.download_data(AUTO_DL_LIMIT) return self._metas @property def W(self): """Numpy array with class values.""" if self._W is None: self.download_data(AUTO_DL_LIMIT) return self._W @property def ids(self): """Numpy array with class values.""" if self._ids is None: self.download_data(AUTO_DL_LIMIT) return self._ids @ids.setter def ids(self, value): self._ids = value @ids.deleter def ids(self): del self._ids
[docs] def has_weights(self): return False
def _compute_basic_stats(self, columns=None, include_metas=False, compute_variance=False): if self.approx_len() > LARGE_TABLE: self = self.sample_time(DEFAULT_SAMPLE_TIME) if columns is not None: columns = [self.domain[col] for col in columns] else: columns = self.domain.variables if include_metas: columns += self.domain.metas return self._get_stats(columns) def _get_stats(self, columns): columns = [(c.to_sql(), c.is_continuous) for c in columns] sql_fields = [] for field_name, continuous in columns: stats = self.CONTINUOUS_STATS if continuous else self.DISCRETE_STATS sql_fields.append(stats % dict(field_name=field_name)) query = self._sql_query(sql_fields) with self.backend.execute_sql_query(query) as cur: results = cur.fetchone() stats = [] i = 0 for ci, (field_name, continuous) in enumerate(columns): if continuous: stats.append(results[i:i+6]) i += 6 else: stats.append((None,) * 4 + results[i:i+2]) i += 2 return stats def _compute_distributions(self, columns=None): if self.approx_len() > LARGE_TABLE: self = self.sample_time(DEFAULT_SAMPLE_TIME) if columns is not None: columns = [self.domain[col] for col in columns] else: columns = self.domain.variables return self._get_distributions(columns) def _get_distributions(self, columns): dists = [] for col in columns: field_name = col.to_sql() fields = field_name, "COUNT(%s)" % field_name query = self._sql_query(fields, filters=['%s IS NOT NULL' % field_name], group_by=[field_name], order_by=[field_name]) with self.backend.execute_sql_query(query) as cur: dist = np.array(cur.fetchall()) if col.is_continuous: dists.append((dist.T, [])) else: dists.append((dist[:, 1].T, [])) return dists def _compute_contingency(self, col_vars=None, row_var=None): if self.approx_len() > LARGE_TABLE: self = self.sample_time(DEFAULT_SAMPLE_TIME) if col_vars is None: col_vars = range(len(self.domain.variables)) if len(col_vars) != 1: raise NotImplementedError("Contingency for multiple columns " "has not yet been implemented.") if row_var is None: raise NotImplementedError("Defaults have not been implemented yet") row = self.domain[row_var] if not row.is_discrete: raise TypeError("Row variable must be discrete") columns = [self.domain[var] for var in col_vars] if any(not (var.is_continuous or var.is_discrete) for var in columns): raise ValueError("contingency can be computed only for discrete " "and continuous values") row_field = row.to_sql() all_contingencies = [None] * len(columns) for i, column in enumerate(columns): column_field = column.to_sql() fields = [row_field, column_field, "COUNT(%s)" % column_field] group_by = [row_field, column_field] order_by = [column_field] filters = ['%s IS NOT NULL' % f for f in (row_field, column_field)] query = self._sql_query(fields, filters=filters, group_by=group_by, order_by=order_by) with self.backend.execute_sql_query(query) as cur: data = list(cur.fetchall()) if column.is_continuous: all_contingencies[i] = \ (self._continuous_contingencies(data, row), [], [], 0) else: all_contingencies[i] =\ (self._discrete_contingencies(data, row, column), [], [], 0) return all_contingencies def _continuous_contingencies(self, data, row): values = np.zeros(len(data)) counts = np.zeros((len(row.values), len(data))) last = None i = -1 for row_value, column_value, count in data: if column_value == last: counts[row.to_val(row_value), i] += count else: i += 1 last = column_value values[i] = column_value counts[row.to_val(row_value), i] += count return (values, counts) def _discrete_contingencies(self, data, row, column): conts = np.zeros((len(row.values), len(column.values))) for row_value, col_value, count in data: row_index = row.to_val(row_value) col_index = column.to_val(col_value) conts[row_index, col_index] = count return conts def X_density(self): return self.DENSE def Y_density(self): return self.DENSE def metas_density(self): return self.DENSE # Filters def _filter_is_defined(self, columns=None, negate=False): if columns is None: columns = range(len(self.domain.variables)) columns = [self.domain[i].to_sql() for i in columns] t2 = self.copy() t2.row_filters += (sql_filter.IsDefinedSql(columns, negate),) return t2 def _filter_has_class(self, negate=False): columns = [c.to_sql() for c in self.domain.class_vars] t2 = self.copy() t2.row_filters += (sql_filter.IsDefinedSql(columns, negate),) return t2 def _filter_same_value(self, column, value, negate=False): var = self.domain[column] if value is None: pass elif var.is_discrete: value = var.to_val(value) value = "'%s'" % var.repr_val(value) else: pass t2 = self.copy() t2.row_filters += \ (sql_filter.SameValueSql(var.to_sql(), value, negate),) return t2 def _filter_values(self, f): conditions = [] for cond in f.conditions: var = self.domain[cond.column] if isinstance(cond, filter.FilterDiscrete): if cond.values is None: values = None else: values = ["'%s'" % var.repr_val(var.to_val(v)) for v in cond.values] new_condition = sql_filter.FilterDiscreteSql( column=var.to_sql(), values=values) elif isinstance(cond, filter.FilterContinuous): new_condition = sql_filter.FilterContinuousSql( position=var.to_sql(), oper=cond.oper, ref=cond.ref, max=cond.max) elif isinstance(cond, filter.FilterString): new_condition = sql_filter.FilterString( var.to_sql(), oper=cond.oper, ref=cond.ref, max=cond.max, case_sensitive=cond.case_sensitive, ) elif isinstance(cond, filter.FilterStringList): new_condition = sql_filter.FilterStringList( column=var.to_sql(), values=cond.values, case_sensitive=cond.case_sensitive) else: raise ValueError('Invalid condition %s' % type(cond)) conditions.append(new_condition) t2 = self.copy() t2.row_filters += (sql_filter.ValuesSql(conditions=conditions, conjunction=f.conjunction, negate=f.negate),) return t2
[docs] @classmethod def from_table(cls, domain, source, row_indices=...): # pylint: disable=unused-argument assert row_indices is ... table = source.copy() table.domain = domain return table
# sql queries def _sql_query(self, fields, filters=(), group_by=None, order_by=None, offset=None, limit=None, use_time_sample=None): row_filters = [f.to_sql() for f in self.row_filters] row_filters.extend(filters) return self.backend.create_sql_query( self.table_name, fields, row_filters, group_by, order_by, offset, limit, use_time_sample) DISCRETE_STATS = "SUM(CASE TRUE WHEN %(field_name)s IS NULL THEN 1 " \ "ELSE 0 END), " \ "SUM(CASE TRUE WHEN %(field_name)s IS NULL THEN 0 " \ "ELSE 1 END)" CONTINUOUS_STATS = "MIN(%(field_name)s)::double precision, " \ "MAX(%(field_name)s)::double precision, " \ "AVG(%(field_name)s)::double precision, " \ "STDDEV(%(field_name)s)::double precision, " \ + DISCRETE_STATS def sample_percentage(self, percentage, no_cache=False): if percentage >= 100: return self return self._sample('system', percentage, no_cache=no_cache) def sample_time(self, time_in_seconds, no_cache=False): return self._sample('system_time', int(time_in_seconds * 1000), no_cache=no_cache) def _sample(self, method, parameter, no_cache=False): # the module is optional, but this function is not called if it's not installed # pylint: disable=import-error import psycopg2 if "," in self.table_name: raise NotImplementedError("Sampling of complex queries is not supported") parameter = str(parameter) if "." in self.table_name: schema, name = self.table_name.split(".") sample_name = '__%s_%s_%s' % ( self.backend.unquote_identifier(name), method, parameter.replace('.', '_').replace('-', '_')) sample_table_q = ".".join([schema, self.backend.quote_identifier(sample_name)]) else: sample_table = '__%s_%s_%s' % ( self.backend.unquote_identifier(self.table_name), method, parameter.replace('.', '_').replace('-', '_')) sample_table_q = self.backend.quote_identifier(sample_table) create = False try: query = "SELECT * FROM " + sample_table_q + " LIMIT 0;" with self.backend.execute_sql_query(query): pass if no_cache: query = "DROP TABLE " + sample_table_q with self.backend.execute_sql_query(query): pass create = True except BackendError: create = True if create: with self.backend.execute_sql_query( " ".join(["CREATE TABLE", sample_table_q, "AS", "SELECT * FROM", self.table_name, "TABLESAMPLE", method, "(", parameter, ")"])): pass sampled_table = self.copy() sampled_table.table_name = sample_table_q with sampled_table.backend.execute_sql_query('ANALYZE' + sample_table_q): pass return sampled_table @contextmanager def _execute_sql_query(self, query, param=None): warnings.warn("Use backend.execute_sql_query", DeprecationWarning) with self.backend.execute_sql_query(query, param) as cur: yield cur
[docs] def checksum(self, include_metas=True): return np.nan
def __get_nan_frequency(self, columns): try: query = self._sql_query([" + ".join([f"COUNT(*) - COUNT({col.to_sql()})" for col in columns])]) with self.backend.execute_sql_query(query) as cur: return cur.fetchone()[0] / (len(self) * len(columns)) except BackendError: return None def get_nan_frequency_attribute(self): return self.__get_nan_frequency(self.domain.attributes) def get_nan_frequency_class(self): return self.__get_nan_frequency(self.domain.class_vars) def __getstate__(self): # avoids locking magic in Table.__getstate__ return self.__dict__ def __setstate__(self, state): # avoid locking magic in Table.__setstate__ self.__dict__.update(state) # if X is defined then it was already downloaded # thus ids exist to, rewrite them if self._X is not None: self._init_ids(self) # pylint: disable=unused-argument def _update_locks(self, *args, **kwargs): # avoid locking inherited from Table return # pylint: disable=unused-argument
[docs] def unlocked(self, *parts): # avoid locking inherited from Table return contextlib.nullcontext()