
Orange Visual Programming
Documentation

Release 3

Orange Data Mining

Sep 05, 2017

Contents

1 Getting Started 1

2 Widgets 13

i

ii

CHAPTER 1

Getting Started

Here we need to copy the getting started guide.

Loading your Data

Orange comes with its own data format, but can also handle native Excel (.xlsx or .xls), comma- or tab-delimited
data files. The input data set is usually a table, with data instances (samples) in rows and data attributes in columns.
Attributes can be of different types (continuous, discrete, time, and strings) and have assigned roles (input features,
meta attributes, and class). Data attribute type and role can be provided in the data table header. They can also be
subsequently changed in the File widget, while data role can also be modified with Select Columns widget.

In a Nutshell

• Orange can import any comma- or tab-delimited data file, or Excel’s native files or Google Sheets document.
Use File widget to load the data and, if needed, define the class and meta attributes.

• Attribute names in the column header can be preceded with a label followed by a hash. Use c for class and m
for meta attribute, i to ignore a column, w for weights column, and C, D, T, S for continuous, discrete, time, and
string attribute types. Examples: C#mph, mS#name, i#dummy.

• An alternative to the hash notation is Orange’s native format with three header rows: the first with attribute
names, the second specifying the type (continuous, discrete, time, or string), and the third proving information
on the attribute role (class, meta, weight or ignore).

Example: Data from Excel

Here is an example data set (download it from sample.xlsx) as entered in Excel:

1

http://docs.orange.biolab.si/reference/rst/Orange.data.formats.html#tab-delimited

Orange Visual Programming Documentation, Release 3

The file contains a header row, eight data instances (rows) and seven data attributes (columns). Empty cells in the table
denote missing data entries. Rows represent genes; their function (class) is provided in the first column and their name
in the second. The remaining columns store measurements that characterize each gene. With this data, we could, say,
develop a classifier that would predict gene function from its characteristic measurements.

Let us start with a simple workflow that reads the data and displays it in a table:

To load the data, open the File widget (double click on the icon of the widget), click on the file browser icon (”...”)
and locate the downloaded file (from sample.xlsx) on your disk:

2 Chapter 1. Getting Started

Orange Visual Programming Documentation, Release 3

File Widget: Setting the Attribute Type and Role

The File widget sends the data to the Data Table. Double click the Data Table to see its contents:

1.1. Loading your Data 3

Orange Visual Programming Documentation, Release 3

Orange correctly assumed that a column with gene names is meta information, which is displayed in the Data Table
in columns shaded with light-brown. It has not guessed that function, the first non-meta column in our data file, is
a class column. To correct this in Orange, we can adjust attribute role in the column display of File widget (below).
Double-click the feature label in the function row and select target instead. This will set function attribute as our target
(class) variable.

4 Chapter 1. Getting Started

Orange Visual Programming Documentation, Release 3

You can also change attribute type from nominal to numeric, from string to datetime, and so on. Naturally, data values
have to suit the specified attribute type. Datetime accepts only values in ISO 8601 format, e.g. 2016-01-01 16:16:01.
Orange would also assume the attribute is numeric if it has several different values, else it would be considered
nominal. All other types are considered strings and are as such automatically categorized as meta attributes.

Change of attribute roles and types should be confirmed by clicking the Apply button.

Select Columns: Setting the Attribute Role

Another way to set the data role is to feed the data to the Select Columns widget:

Opening Select Columns reveals Orange’s classification of attributes. We would like all of our continuous attributes to
be data features, gene function to be our target variable and gene names considered as meta attributes. We can obtain
this by dragging the attribute names around the boxes in Select Columns:

1.1. Loading your Data 5

https://en.wikipedia.org/wiki/ISO_8601

Orange Visual Programming Documentation, Release 3

To correctly reassign attribute types, drag attribute named function to a Class box, and attribute named gene to a Meta
Attribute box. The Select Columns widget should now look like this:

Change of attribute types in Select Columns widget should be confirmed by clicking the Apply button. The data from
this widget is fed into Data Table that now renders the data just the way we intended:

6 Chapter 1. Getting Started

Orange Visual Programming Documentation, Release 3

We could also define the domain for this data set in a different way. Say, we could make the data set ready for
regression, and use heat 0 as a continuous class variable, keep gene function and name as meta variables, and remove
heat 10 and heat 20 from the data set:

By setting the attributes as above, the rendering of the data in the Data Table widget gives the following output:

1.1. Loading your Data 7

Orange Visual Programming Documentation, Release 3

Header with Attribute Type Information

Consider again the sample.xlsx data set. This time we will augment the names of the attributes with prefixes that
define attribute type (continuous, discrete, time, string) and role (class or meta attribute) Prefixes are separated from
the attribute name with a hash sign (“#”). Prefixes for attribute roles are:

• c: class attribute

• m: meta attribute

• i: ignore the attribute

• w: instance weights

and for the type:

• C: Continuous

• D: Discrete

• T: Time

• S: String

This is how the header with augmented attribute names looks like in Excel (sample-head.xlsx):

8 Chapter 1. Getting Started

Orange Visual Programming Documentation, Release 3

We can again use a File widget to load this data set and then render it in the Data Table:

Notice that the attributes we have ignored (label “i” in the attribute name) are not present in the data set.

Three-Row Header Format

Orange’s legacy native data format is a tab-delimited text file with three header rows. The first row lists the attribute
names, the second row defines their type (continuous, discrete, time and string, or abbreviated c, d, t, and s), and the
third row an optional role (class, meta, weight, or ignore). Here is an example:

1.1. Loading your Data 9

Orange Visual Programming Documentation, Release 3

Data from Google Sheets

Orange can read data from Google Sheets, as long as it conforms to the data presentation rules we have presented
above. In Google Sheets, copy the shareable link (Share button, then Get shareable link) and paste it in the Data File /
URL box of the File widget. For a taste, here’s one such link you can use: http://bit.ly/1J12Tdp, and the way we have
entered it in the File widget:

10 Chapter 1. Getting Started

http://bit.ly/1J12Tdp

Orange Visual Programming Documentation, Release 3

Data from LibreOffice

If you are using LibreOffice, simply save your files in Excel (.xlsx or .xls) format (available from the drop-down menu
under Save As Type).

Datetime Format

To avoid ambiguity, Orange supports date and/or time formatted in one of ISO 8601 formats. E.g., the following values
are all valid:

2016
2016-12-27
2016-12-27 14:20:51+02:00
16:20

1.1. Loading your Data 11

https://en.wikipedia.org/wiki/ISO_8601

Orange Visual Programming Documentation, Release 3

12 Chapter 1. Getting Started

CHAPTER 2

Widgets

Data

File

Reads attribute-value data from an input file.

Signals

Inputs:

• (None)

Outputs:

• Data

Attribute-valued data from the input file

Description

The File widget reads the input data file (data table with data instances) and sends the data set to its output channel.
The history of most recently opened files is maintained in the widget. The widget also includes a directory with sample
data sets that come pre-installed with Orange.

The widget reads data from Excel (.xlsx), simple tab-delimited (.txt), comma-separated files (.csv) or URLs.

1. Browse through previously opened data files, or load any of the sample ones.

2. Browse for a data file.

13

Orange Visual Programming Documentation, Release 3

14 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

3. Reloads currently selected data file.

4. Insert data from URL adresses, including data from Google Sheets.

5. Information on the loaded data set: data set size, number and types of data features.

6. Additional information on the features in the data set. Features can be edited by double-clicking on them. The
user can change the attribute names, select the type of variable per each attribute (Continuous, Nominal, String,
Datetime), and choose how to further define the attributes (as Features, Targets or Meta). The user can also
decide to ignore an attribute.

7. Browse documentation data sets.

8. Produce a report.

Example

Most Orange workflows would probably start with the File widget. In the schema below, the widget is used to read
the data that is sent to both the Data Table and the Box Plot widget.

Loading your data

• Orange can import any comma, .xlsx or tab-delimited data file or URL. Use the File widget and then, if needed,
select class and meta attributes.

• To specify the domain and the type of the attribute, attribute names can be preceded with a label followed by a
hash. Use c for class and m for meta attribute, i to ignore a column, and C, D, S for continuous, discrete and
string attribute types. Examples: C#mpg, mS#name, i#dummy. Make sure to set Import Options in File widget
and set the header to Orange simplified header.

• Orange’s native format is a tab-delimited text file with three header rows. The first row contains attribute names,
the second the type (continuous, discrete or string), and the third the optional element (class, meta or string).

Read more on loading your data here.

SQL Table

Reads data from an SQL database.

2.1. Data 15

Orange Visual Programming Documentation, Release 3

16 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• (None)

Outputs:

• Data

Attribute-valued data from the database

Description

The SQL widget accesses data stored in an SQL database. It can connect to PostgreSQL (requires psycopg2 module)
or SQL Server (requires pymssql module).

Save Data

Saves data to a file.

Signals

Inputs:

• Data

A data set.

Outputs:

• (None)

2.1. Data 17

http://initd.org/psycopg/
https://www.microsoft.com/en-us/sql-server/
http://pymssql.org/en/stable/

Orange Visual Programming Documentation, Release 3

Description

The Save Data widget considers a data set provided in the input channel and saves it to a data file with a specified
name. It can save the data as a tab-delimited or a comma-separated file.

The widget does not save the data every time it receives a new signal in the input as this would constantly (and, mostly,
inadvertently) overwrite the file. Instead, the data is saved only after a new file name is set or the user pushes the Save
button.

1. Save by overwriting the existing file.

2. Save as to create a new file.

Example

In the workflow below, we used the Zoo data set. We loaded the data into the Scatter Plot widget, with which we
selected a subset of data instances and pushed them to the Save Data widget to store them in a file.

Data Info

Displays information on a selected data set.

Signals

Inputs:

• Data

A data set.

• Selected Data

A data subset.

Outputs:

• (None)

Description

A simple widget that presents information on data set size, features, targets, meta attributes, and location.

1. Information on data set size

2. Information on discrete and continuous features

18 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 19

Orange Visual Programming Documentation, Release 3

20 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

3. Information on targets

4. Information on meta attributes

5. Information on where the data is stored

6. Produce a report.

Example

Below, we compare the basic statistics of two Data Info widgets - one with information on the entire data set and the
other with information on the (manually) selected subset from the Scatterplot widget. We used the Iris data set.

Data Table

Displays attribute-value data in a spreadsheet.

Signals

Inputs:

2.1. Data 21

Orange Visual Programming Documentation, Release 3

• Data

Attribute-valued data set.

Outputs:

• Selected Data

Selected data instances.

Description

The Data Table widget receives one or more data sets in its input and presents them as a spreadsheet. Data instances
may be sorted by attribute values. The widget also supports manual selection of data instances.

1. The name of the data set (usually the input data file). Data instances are in rows and their attribute values in
columns. In this example, the data set is sorted by the attribute “sepal length”.

2. Info on current data set size and number and types of attributes

3. Values of continuous attributes can be visualized with bars; colors can be attributed to different classes.

4. Data instances (rows) can be selected and sent to the widget’s output channel.

5. Use the Restore Original Order button to reorder data instances after attribute-based sorting.

6. Produce a report.

7. While auto-send is on, all changes will be automatically communicated to other widgets. Otherwise, press Send
Selected Rows.

22 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Example

We used two File widgets to read the Iris and Glass data set (provided in Orange distribution), and send them to the
Data Table widget.

Selected data instances in the first Data Table are passed to the second Data Table. Notice that we can select which
data set to view (iris or glass). Changing from one data set to another alters the communicated selection of data
instances if Commit on any change is selected.

Select Columns

Manual selection of data attributes and composition of data domain.

Signals

Inputs:

• Data

Attribute-valued data set.

Outputs:

• Data

Attribute-valued data set composed using the domain specification from the widget.

Description

The Select Columns widget is used to manually compose your data domain. The user can decide which attributes will
be used and how. Orange distinguishes between ordinary attributes, (optional) class attributes and meta attributes. For
instance, for building a classification model, the domain would be composed of a set of attributes and a discrete class
attribute. Meta attributes are not used in modelling, but several widgets can use them as instance labels.

Orange attributes have a type and are either discrete, continuous or a character string. The attribute type is marked
with a symbol appearing before the name of the attribute (D, C, S, respectively).

1. Left-out data attributes that will not be in the output data file

2.1. Data 23

https://en.wikipedia.org/wiki/Data_domain

Orange Visual Programming Documentation, Release 3

24 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 25

Orange Visual Programming Documentation, Release 3

2. Data attributes in the new data file

3. Target variable. If none, the new data set will be without a target variable.

4. Meta attributes of the new data file. These attributes are included in the data set but are, for most methods, not
considered in the analysis.

5. Produce a report.

6. Reset the domain composition to that of the input data file.

7. Tick if you wish to auto-apply changes of the data domain.

8. Apply changes of the data domain and send the new data file to the output channel of the widget.

Examples

In the workflow below, the Iris data from the File widget is fed into the Select Columns widget, where we select to
output only two attributes (namely petal width and petal length). We view both the original data set and the data set
with selected columns in the Data Table widget.

For a more complex use of the widget, we composed a workflow to redefine the classification problem in the heart-
disease data set. Originally, the task was to predict if the patient has a coronary artery diameter narrowing. We changed
the problem to that of gender classification, based on age, chest pain and cholesterol level, and informatively kept the
diameter narrowing as a meta attribute.

26 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 27

Orange Visual Programming Documentation, Release 3

Select Rows

Selects data instances based on conditions over data features.

Signals

Inputs:

• Data

Data set.

Outputs:

• Matching Data

Instances that match the conditions.

• Non-Matching Data

Instances that do not match the conditions.

Description

This widget selects a subset from an input data set, based on user-defined conditions. Instances that match the selection
rule are placed in the output Matching Data channel.

Criteria for data selection are presented as a collection of conjuncted terms (i.e. selected items are those matching all
the terms in ‘Conditions‘).

Condition terms are defined through selecting an attribute, selecting an operator from a list of operators, and, if needed,
defining the value to be used in the condition term. Operators are different for discrete, continuous and string attributes.

1. Conditions you want to apply, their operators and related values

2. Add a new condition to the list of conditions.

3. Add all the possible variables at once.

4. Remove all the listed variables at once.

5. Information on the input data set and information on instances that match the condition(s)

6. Purge the output data.

7. When the Send automatically box is ticked, all changes will be automatically communicated to other widgets.

8. Produce a report.

Any change in the composition of the condition will update the information pane (Data Out).

If Send automatically is selected, then the output is updated on any change in the composition of the condition or any
of its terms.

Example

In the workflow below, we used the Zoo data from the File widget and fed it into the Select Rows widget. In the
widget, we chose to output only two animal types, namely fish and reptiles. We can inspect both the original data set
and the data set with selected rows in the Data Table widget.

28 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 29

Orange Visual Programming Documentation, Release 3

30 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

In the next example, we used the data from the Titanic data set and similarly fed it into the Box Plot widget. We first
observed the entire data set based on survival. Then we selected only first class passengers in the Select Rows widget
and fed it again into the Box Plot. There we could see all the first class passengers listed by their survival rate and
grouped by gender.

Data Sampler

Selects a subset of data instances from an input data set.

Signals

Inputs:

• Data

Input data set to be sampled.

Outputs:

• Data Sample

A set of sampled data instances.

• Remaining Data

All other data instances from the input data set, which are not included in the sample.

2.1. Data 31

Orange Visual Programming Documentation, Release 3

Description

The Data Sampler widget implements several means of sampling data from an input channel. It outputs a sampled
and a complementary data set (with instances from the input set that are not included in the sampled data set). The
output is processed after the input data set is provided and Sample Data is pressed.

1. Information on the input and output data set

2. The desired sampling method:

• Fixed proportion of data returns a selected percentage of the entire data (e.g. 70% of all the data)

• Fixed sample size returns a selected number of data instances with a chance to set Sample with replace-
ment, which always samples from the entire data set (does not subtract instances already in the subset)

• Cross Validation partitions data instances into complementary subsets, where you can select the number
of folds (subsets) and which fold you want to use as a sample.

3. Replicable sampling maintains sampling patterns that can be carried across users, while stratification mimics
the composition of the input data set.

4. Produce a report.

5. Press Sample data to output the data sample.

Examples

First, let’s see how the Data Sampler works. Let’s look at the information on the original data set in the Data Info
widget. We see there are 24 instances in the data (we used lenses.tab). We sampled the data with the Data Sampler
widget and we chose to go with a fixed sample size of 5 instances for simplicity. We can observe the sampled data in
the Data Table widget. The second Data Table shows the remaining 19 instances that weren’t in the sample.

In the workflow below, we have sampled 10 data instances from the Iris data set and sent the original data and the
sample to Scatter Plot widget for exploratory data analysis. The sampled data instances are plotted with filled circles,
while the original data set is represented with empty circles.

Transpose

Transposes a data table.

Signals

Inputs:

• Data

A data set.

Outputs:

• Data

Transposed data set

Description

Transpose widget transposes data table.

32 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Orange Visual Programming Documentation, Release 3

2.1. Data 33

Orange Visual Programming Documentation, Release 3

34 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 35

Orange Visual Programming Documentation, Release 3

Example

This is a simple workflow showing how to use Transpose. Connect the widget to File widget. The output of Transpose
is a transposed data table with rows as columns and columns as rows. You can observe the result in a Data Table.

Discretize

Discretizes continuous attributes from an input data set.

Signals

Inputs:

• Data

Attribute-valued data set.

Outputs:

• Data

A data set with discretized values.

36 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Description

The Discretize widget discretizes continuous attributes with a selected method.

1. The basic version of the widget is rather simple. It allows choosing between three different discretizations.

• Entropy-MDL, invented by Fayyad and Irani is a top-down discretization, which recursively splits the
attribute at a cut maximizing information gain, until the gain is lower than the minimal description length
of the cut. This discretization can result in an arbitrary number of intervals, including a single interval, in
which case the attribute is discarded as useless (removed).

• Equal-frequency splits the attribute into a given number of intervals, so that they each contain approxi-
mately the same number of instances.

• Equal-width evenly splits the range between the smallest and the largest observed value. The Number of
intervals can be set manually.

• The widget can also be set to leave the attributes continuous or to remove them.

2.1. Data 37

https://en.wikipedia.org/wiki/Discretization
http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL2/PDF/022.pdf
http://www.saedsayad.com/unsupervised_binning.htm
https://en.wikipedia.org/wiki/Data_binning

Orange Visual Programming Documentation, Release 3

2. To treat attributes individually, go to Individual Attribute Settings. They show a specific discretization of each
attribute and allow changes. First, the top left list shows the cut-off points for each attribute. In the snapshot, we
used the entropy-MDL discretization, which determines the optimal number of intervals automatically; we can
see it discretized the age into seven intervals with cut-offs at 21.50, 23.50, 27.50, 35.50, 43.50, 54.50 and 61.50,
respectively, while the capital-gain got split into many intervals with several cut-offs. The final weight (fnlwgt),
for instance, was left with a single interval and thus removed.

On the right, we can select a specific discretization method for each attribute. Attribute “fnlwgt” would be
removed by the MDL-based discretization, so to prevent its removal, we select the attribute and choose, for
instance, Equal-frequency discretization. We could also choose to leave the attribute continuous.

3. Produce a report.

4. Tick Apply automatically for the widget to automatically commit changes. Alternatively, press Apply.

Example

In the schema below, we show the Iris data set with continuous attributes (as in the original data file) and with
discretized attributes.

Continuize

Turns discrete attributes into continuous dummy variables.

38 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

Input data set

Outputs:

• Data

Output data set

Description

The Continuize widget receives a data set in the input and outputs the same data set in which the discrete attributes
(including binary attributes) are replaced with continuous ones.

1. Continuization methods, which define the treatment of multivalued discrete attributes. Say that we have a
discrete attribute status with the values low, middle and high, listed in that order. Options for their transformation
are:

• Target or First value as base: the attribute will be transformed into two continuous attributes, sta-
tus=middle with values 0 or 1 signifying whether the original attribute had value middle on a particular
example, and similarly, status=high. Hence, a three-valued attribute is transformed into two continuous
attributes, corresponding to all except the first value of the attribute.

• Most frequent value as base: similar to the above, except that the data is analyzed and the most frequent
value is used as a base. So, if most examples have the value middle, the two newly constructed continuous
attributes will be status=low and status=high.

• One attribute per value: this would construct three continuous attributes out of a three-valued discrete
one.

• Ignore multinominal attributes: removes the multinominal attributes from the data.

• Treat as ordinal: converts the attribute into a continuous attribute with values 0, 1, and 2.

• Divide by number of values: same as above, except that the values are normalized into range 0-1. So, our
case would give values 0, 0.5 and 1.

2. Define the treatment of continuous attributes. You will usually prefer the Leave them as they are option. The
alternative is Normalize by span, which will subtract the lowest value found in the data and divide by the span,
so all values will fit into [0, 1]. Finally, Normalize by standard deviation subtracts the average and divides by
the deviation.

3. Define the treatment of class attributes. Besides leaving it as it is, there are also a couple of options available
for multinominal attributes, except for those options which split the attribute into more than one attribute - this
obviously cannot be supported since you cannot have more than one class attribute.

4. With value range, you can define the values of new attributes. In the above text, we supposed the range from 0
to 1. You can change it to from -1 to 1.

5. Produce a report.

2.1. Data 39

https://en.wikipedia.org/wiki/Continuity_correction

Orange Visual Programming Documentation, Release 3

40 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

6. If Apply automatically is ticked, changes are committed automatically. Otherwise, you have to press Apply after
each change.

Examples

First, let’s see what is the output of the Continuize widget. We feed the original data (the Heart disease data set) into
the Data Table and see how they look like. Then we continuize the discrete values and observe them in another Data
Table.

In the second example, we show a typical use of this widget - in order to properly plot the linear projection of the
data, discrete attributes need to be converted to continuous ones and that is why we put the data through the Con-
tinuize widget before drawing it. The attribute “chest pain” originally had four values and was transformed into three
continuous attributes; similar happened to gender, which was transformed into a single attribute “gender=female”.

Randomize

Shuffles classes, attributes and/or metas of an input data set.

Signals

Inputs:

2.1. Data 41

Orange Visual Programming Documentation, Release 3

42 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Data

Data set.

Outputs:

• Data

Randomized data set.

Description

The Randomize widget receives a data set in the input and outputs the same data set in which the classes, attributes
or/and metas are shuffled.

1. Select group of columns of the data set you want to shuffle.

2. Select proportion of the data set you want to shuffle.

3. Produce replicable output.

4. If Apply automatically is ticked, changes are committed automatically. Otherwise, you have to press Apply after
each change.

5. Produce a report.

Example

The Randomize widget is usually placed right after (e.g. File widget. The basic usage is shown in the following
workflow, where values of class variable of Iris data set are randomly shuffled.

In the next example we show how shuffling class values influences model performance on the same data set as above.

2.1. Data 43

Orange Visual Programming Documentation, Release 3

44 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Concatenate

Concatenates data from multiple sources.

Signals

Inputs:

• Primary Data

A data set that defines the attribute set.

• Additional Data

An additional data set.

Outputs:

• Data

Description

The widget concatenates multiple sets of instances (data sets). The merge is “vertical”, in a sense that two sets of 10
and 5 instances yield a new set of 15 instances.

1. Set the attribute merging method.

2. Add the identification of source data sets to the output data set.

3. Produce a report.

4. If Apply automatically is ticked, changes are communicated automatically. Otherwise, click Apply.

If one of the tables is connected to the widget as the primary table, the resulting table will contain its own attributes.
If there is no primary table, the attributes can be either a union of all attributes that appear in the tables specified as
Additional Tables, or their intersection, that is, a list of attributes common to all the connected tables.

Example

As shown below, the widget can be used for merging data from two separate files. Let’s say we have two data sets
with the same attributes, one containing instances from the first experiment and the other instances from the second
experiment and we wish to join the two data tables together. We use the Concatenate widget to merge the data sets
by attributes (appending new rows under existing attributes).

Below, we used a modified Zoo data set. In the first File widget, we loaded only the animals beginning with the
letters A and B and in the second one only the animals beginning with the letter C. Upon concatenation, we observe
the new data in the Data Table widget, where we see the complete table with animals from A to C.

Paint Data

Paints data on a 2D plane. You can place individual data points or use a brush to paint larger data sets.

2.1. Data 45

Orange Visual Programming Documentation, Release 3

46 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 47

Orange Visual Programming Documentation, Release 3

Signals

Inputs

• (None)

Outputs

• Data

Attribute-valued data set created in the widget

Description

The widget supports the creation of a new data set by visually placing data points on a two-dimension plane. Data
points can be placed on the plane individually (Put) or in a larger number by brushing (Brush). Data points can belong
to classes if the data is intended to be used in supervised learning.

1. Name the axes and select a class to paint data instances. You can add or remove classes. Use only one class to
create classless, unsupervised data sets.

2. Drawing tools. Paint data points with Brush (multiple data instances) or Put (individual data instance). Select
data points with Select and remove them with the Delete/Backspace key. Reposition data points with Jitter
(spread) and Magnet (focus). Use Zoom and scroll to zoom in or out. Below, set the radius and intensity for
Brush, Put, Jitter and Magnet tools.

3. Reset to Input Data.

4. Save Image saves the image to your computer in a .svg or .png format.

5. Produce a report.

6. Tick the box on the left to automatically commit changes to other widgets. Alternatively, press Send to apply
them.

Example

In the example below, we have painted a data set with 4 classes. Such data set is great for demonstrating k-means
and hierarchical clustering methods. In the screenshot, we see that k-means, overall, recognizes clusters better than
hierarchical clustering. It returns a score rank, where the best score (the one with the highest value) means the most
likely number of clusters. Hierarchical clustering, however, doesn’t group the right classes together. This is a great
tool for learning and exploring statistical concepts.

Python Script

Extends functionalities through Python scripting.

Signals

Inputs:

• in_data (Orange.data.Table)

Input data set bound to in_data variable in the script’s local namespace.

• in_distance (Orange.core.SymMatrix)

Input symmetric matrix bound to in_distance variable in the script’s local namespace.

48 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Jitter

Orange Visual Programming Documentation, Release 3

2.1. Data 49

Orange Visual Programming Documentation, Release 3

50 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• in_learner (Orange.classification.Learner)

Input learner bound to in_learner variable in the script’s local namespace.

• in_classifier (Orange.classification.Learner)

Input classifier bound to in_classifier variable in the script’s local namespace.

• in_object (object)

Input python object bound to in_object variable in the script’s local namespace.

Outputs:

• out_data (Orange.data.Table)

Data set retrieved from out_data variable in the script’s local namespace after execution.

• out_distance (Orange.core.SymMatrix)

Symmetric matrix retrieved from out_distance variable in the script’s local namespace after execution.

• out_learner (Orange.classification.Learner)

Learner retrieved from out_learner variable in the script’s local namespace.

• out_classifier (Orange.classification.Learner)

Classifier retrieved from out_classifier variable in the script’s local namespace after execution.

• out_object (object)

Python object retrieved from out_object variable in the script’s local namespace after execution.

Description

Python Script widget can be used to run a python script in the input, when a suitable functionality is not imple-
mented in an existing widget. The script has in_data, in_distance, in_learner, in_classifier and
in_object variables (from input signals) in its local namespace. If a signal is not connected or it did not yet receive
any data, those variables contain None.

After the script is executed, out_data, out_distance, . . . variables from the script’s local namespace are ex-
tracted and used as outputs of the widget. The widget can be further connected to other widgets for visualizing the
output.

For instance the following script would simply pass on all signals it receives:

out_data = in_data
out_distance = in_distance
out_learner = in_learner
out_classifier = in_classifier
out_object = in_object

Note: You should not modify the input objects in place.

1. Info box contains names of basic operators for Orange Python script.

2. The Library control can be used to manage multiple scripts. Pressing “+” will add a new entry and open it in the
Python script editor. When the script is modified, its entry in the Library will change to indicate it has unsaved
changes. Pressing Update will save the script (keyboard shortcut ctrl + s). A script can be removed by selecting
it and pressing the “-” button.

2.1. Data 51

Orange Visual Programming Documentation, Release 3

52 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

3. Pressing Execute in the Run box executes the script (using exec). Any script output (from print) is captured
and displayed in the Console below the script. If Auto execute is checked, the script is run any time inputs to the
widget change.

4. The Python script editor on the left can be used to edit a script (it supports some rudimentary syntax highlight-
ing).

5. Console displays the output of the script.

Examples

Python Script widget is intended to extend functionalities for advanced users.

One can, for example, do batch filtering by attributes. We used zoo.tab for the example and we filtered out all the
attributes that have more than 5 discrete values. This in our case removed only ‘leg’ attribute, but imagine an example
where one would have many such attributes.

from Orange.data import Domain, Table
domain = Domain([attr for attr in in_data.domain.attributes

if attr.is_continuous or len(attr.values) <= 5],
in_data.domain.class_vars)

out_data = Table(domain, in_data)

The second example shows how to round all the values in a few lines of code. This time we used wine.tab and rounded
all the values to whole numbers.

import numpy as np
out_data = in_data.copy()
#copy, otherwise input data will be overwritten
np.round(out_data.X, 0, out_data.X)

The third example introduces some gaussian noise to the data. Again we make a copy of the input data, then walk
through all the values with a double for loop and add random noise.

import random
from Orange.data import Domain, Table
new_data = in_data.copy()
for inst in new_data:
for f in inst.domain.attributes:
inst[f] += random.gauss(0, 0.02)

out_data = new_data

The final example uses Orange3-Text add-on. Python Script is very useful for custom preprocessing in text mining,
extracting new features from strings, or utilizing advanced nltk or gensim functions. Below, we simply tokenized our
input data from deerwester.tab by splitting them by whitespace.

print('Running Preprocessing ...')
tokens = [doc.split(' ') for doc in in_data.documents]
print('Tokens:', tokens)
out_object = in_data
out_object.store_tokens(tokens)

You can add a lot of other preprocessing steps to further adjust the output. The output of Python Script can be used
with any widget that accepts the type of output your script produces. In this case, connection is green, which signalizes
the right type of input for Word Cloud widget.

2.1. Data 53

Orange Visual Programming Documentation, Release 3

54 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 55

Orange Visual Programming Documentation, Release 3

56 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Feature Constructor

Add new features to your data set.

Signals

Inputs:

• Data

A data set

Outputs:

• Data

A modified data set

Description

The Feature Constructor allows you to manually add features (columns) into your data set. The new feature can be a
computation of an existing one or a combination of several (addition, subtraction, etc.). You can choose what type of
feature it will be (discrete, continuous or string) and what its parameters are (name, value, expression). For continuous
variables you only have to construct an expression in Python.

1. List of constructed variables

2. Add or remove variables.

3. New feature name

2.1. Data 57

Orange Visual Programming Documentation, Release 3

4. Expression in Python

5. Select a feature.

6. Select a function.

7. Produce a report.

8. Press Send to communicate changes.

For discrete variables, however, there’s a bit more work. First add or remove the values you want for the new feature.
Then select the base value and the expression. In the example below, we have constructed an expression with ‘if lower
than’ and defined three conditions; the program ascribes 0 (which we renamed to lower) if the original value is lower
than 6, 1 (mid) if it is lower than 7 and 2 (higher) for all the other values. Notice that we use an underscore for the
feature name (e.g. petal_length).

1. List of variable definitions

2. Add or remove variables

3. New feature name

4. Expression in Python

5. Select a feature.

6. Select a function.

7. Assign values.

8. Produce a report.

9. Press Send to communicate changes.

58 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 59

Orange Visual Programming Documentation, Release 3

Example

With the Feature Constructor you can easily adjust or combine existing features into new ones. Below, we added
one new discrete feature to the Titanic data set. We created a new attribute called Financial status and set the values to
be rich if the person belongs to the first class (status = first) and not rich for everybody else. We can see the new data
set with Data Table widget.

Hints

If you are unfamiliar with Python math language, here’s a quick introduction.

• +, - to add, subtract

• * to multiply

• / to divide

• % to divide and return the remainder

• ** for exponent (for square root square by 0.5)

• // for floor division

• <, >, <=, >= less than, greater than, less or equal, greater or equal

• == for equal

• != for not equal

As in the example: (value) if (feature name) < (value), else (value) if (feature name) < (value), else (value)

60 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

[Use value 1 if feature is less than specified value, else use value 2 if feature is less than specified value 2, else use
value 3.]

See more here.

Edit Domain

Signals

Inputs:

• Data

An input data set

Outputs:

• Data

An edited output data set

Description

This widget can be used to edit/change a data set’s domain.

1. All features (including meta attributes) from the input data set are listed in the Domain Features list in the box
on the left. Selecting one feature displays an editor on the right.

2. The name of the feature can be changed in the Name line edit. For Discrete features, value names can also be
changed in the Values list box. Additonal feature annotations can be added/removed/edited in the Labels box.
To add a new label, click the “+” button and add the Key and Value columns for the new entry. Selecting an
existing label and pressing “-” will remove the annotation.

3. To revert the changes made to the feature, press the Reset Selected button in the Reset box while the feature is
selected in the Domain Features list. Pressing Reset All will reset all features in the domain at the same time.

4. Pressing the Apply button will send the changed domain data set to the output channel.

Example

Below, we demonstrate how to simply edit an existing domain. We selected the lenses.tab data set and edited the
perscription attribute. Where in the original we had the values myope and hypermetrope, we changed it into nearsight-
edness and farsightedness instead. For an easier comparison, we fed both the original and edited data into the Data
Table widget.

Image Viewer

Displays images that come with a data set.

2.1. Data 61

http://www.tutorialspoint.com/python/python_basic_operators.htm

Orange Visual Programming Documentation, Release 3

62 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 63

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

A data set with images.

Outputs:

• Data

Images that come with the data.

Description

The Image Viewer widget can display images from a data set, which are stored locally or on the internet. It can
be used for image comparison, while looking for similarities or discrepancies between selected data instances (e.g.
bacterial growth or bitmap representations of handwriting).

1. Information on the data set

2. Select the column with image data (links).

3. Select the column with image titles.

64 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

4. Zoom in or out.

5. Saves the visualization in a file.

6. Tick the box on the left to commit changes automatically. Alternatively, click Send.

Examples

A very simple way to use this widget is to connect the File widget with Image Viewer and see all the images that
come with your data set.

Alternatively, you can visualize only selected instances, as shown in the example below.

Impute

Replaces unknown values in the data.

Signals

Inputs

• Data

A data set.

• Learner for Imputation

2.1. Data 65

Orange Visual Programming Documentation, Release 3

66 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

A learning algorithm to be used when values are imputed with a predictive model. This algorithm, if given,
substitutes the default (1-NN).

Outputs

• Data

The same data set as in the input, but with the missing values imputed.

Description

Some Orange’s algorithms and visualizations cannot handle unknown values in the data. This widget does what
statisticians call imputation: it substitutes missing values by values either computed from the data or set by the user.

2.1. Data 67

Orange Visual Programming Documentation, Release 3

1. In the top-most box, Default method, the user can specify a general imputation technique for all attributes.

• Don’t Impute does nothing with the missing values.

• Average/Most-frequent uses the average value (for continuous attributes) or the most common value (for
discrete attributes).

• As a distinct value creates new values to substitute the missing ones.

• Model-based imputer constructs a model for predicting the missing value, based on values of other at-
tributes; a separate model is constructed for each attribute. The default model is 1-NN learner, which
takes the value from the most similar example (this is sometimes referred to as hot deck imputation). This
algorithm can be substituted by one that the user connects to the input signal Learner for Imputation. Note,
however, that if there are discrete and continuous attributes in the data, the algorithm needs to be capable
of handling them both; at the moment only 1-NN learner can do that. (In the future, when Orange has
more regressors, the Impute widget may have separate input signals for discrete and continuous models.)

• Random values computes the distributions of values for each attribute and then imputes by picking random
values from them.

• Remove examples with missing values removes the example containing missing values. This check also
applies to the class attribute if Impute class values is checked.

2. It is possible to specify individual treatment for each attribute, which overrides the default treatment set. One
can also specify a manually defined value used for imputation. In the screenshot, we decided not to impute
the values of “normalized-losses” and “make”, the missing values of “aspiration” will be replaced by random
values, while the missing values of “body-style” and “drive-wheels” are replaced by “hatchback” and “fwd”,
respectively. If the values of “length”, “width” or “height” are missing, the example is discarded. Values of all
other attributes use the default method set above (model-based imputer, in our case).

3. The imputation methods for individual attributes are the same as default. methods.

4. Restore All to Default resets the individual attribute treatments to default.

5. Produce a report.

6. All changes are committed immediately if Apply automatically is checked. Otherwise, Apply needs to be ticked
to apply any new settings.

Example

To demonstrate how the Impute widget works, we played around with the Iris data set and deleted some of the data.
We used the Impute widget and selected the Model-based imputer to impute the missing values. In another Data
Table, we see how the question marks turned into distinct values (“Iris-setosa, “Iris-versicolor”).

Merge Data

Merges two data sets, based on values of selected attributes.

Signals

Inputs:

• Data A

Attribute-valued data set.

68 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 69

Orange Visual Programming Documentation, Release 3

• Data B

Attribute-valued data set.

Outputs:

• Merged Data

Instances from input data A to which attributes from input data B are added.

Description

The Merge Data widget is used to horizontally merge two data sets, based on values of selected attributes. In the
input, two data sets are required, A and B. The widget allows selection of an attribute from each domain, which will
be used to perform the merging. The widget produces one output. It corresponds to instances from the input data A to
which attributes from B are appended, and B+A to instances from B to which attributes from A are appended.

Merging is done by values of selected (merging) attributes. First, the value of the merging attribute from A is taken
and instances from B are searched for matching values. If more than a single instance from B is found, the first one is
taken and horizontally merged with the instance from A. If no instance from B matches the criterion, unknown values
are assigned to the appended attributes.

1. List of comparable attributes from Data A

2. List of comparable attributes from Data B

3. Information on Data A

4. Information on Data B

5. If checked, instances from B without the match are excluded form the output. If not checked, instances from B
without the match are assigned unknown values to the appended attributes.

70 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

6. Produce a report.

Example

Merging two data sets results in appending new attributes to the original file, based on a selected common attribute. In
the example below, we wanted to merge the zoo.tab file containing only factual data with zoo-with-images.tab
containing images. Both files share a common string attribute names. Now, we create a workflow connecting the two
files. The zoo.tab data is connected to Data A input of the Merge Data widget, and the zoo-with-images.tab data to
the Data B input. Outputs of the Merge Data widget is then connected to the Data Table widget. In the latter, the
Merged Data channels are shown, where image attributes are added to the original data.

The case where we want to include all instances in the output, even those where no match by attribute names was
found, is shown in the following workflow.

Hint

If the two data sets consist of equally-named attributes (other than the ones used to perform the merging), Orange will
check by default for consistency of the values of these attributes and report an error in case of non-matching values.
In order to avoid the consistency checking, make sure that new attributes are created for each data set: you may use
the ‘Columns with the same name in different files represent different variables‘ option in the File widget for loading
the data.

2.1. Data 71

Orange Visual Programming Documentation, Release 3

72 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Outliers

Simple outlier detection by comparing distances between instances.

Signals

Inputs:

• Data

A data set

• Distances

A distance matrix

Outputs:

• Outliers

A data set containing instances scored as outliers

• Inliers

A data set containing instances not scored as outliers

Description

The Outliers widget applies one of the two methods for outlier detection. Both methods apply classification to the data
set, one with SVM (multiple kernels) and the other with elliptical envelope. One-class SVM with non-linear kernels
(RBF) performs well with non-Gaussian distributions, while Covariance estimator works only for data with Gaussian
distribution.

1. Information on the input data, number of inliers and outliers based on the selected model.

2. Select the Outlier detection method:

• One class SVM with non-linear kernel (RBF): classifies data as similar or different from the core class

– Nu is a parameter for the upper bound on the fraction of training errors and a lower bound of the
fraction of support vectors

– Kernel coefficient is a gamma parameter, which specifies how much influence a single data instance
has

• Covariance estimator: fits ellipsis to central points with Mahalanobis distance metric

– Contamination is the proportion of outliers in the data set

– Support fraction specifies the proportion of points included in the estimate

3. Produce a report.

4. Click Detect outliers to output the data.

2.1. Data 73

Orange Visual Programming Documentation, Release 3

74 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Example

Below, is a simple example of how to use this widget. We used the Iris data set to detect the outliers. We chose the
one class SVM with non-linear kernel (RBF) method, with Nu set at 20% (less training errors, more support vectors).
Then we observed the outliers in the Data Table widget, while we sent the inliers to the Scatter Plot.

Preprocess

Preprocesses data with selected methods.

Signals

Inputs:

2.1. Data 75

Orange Visual Programming Documentation, Release 3

• Data

A data set.

Outputs:

• Preprocessor

A preprocessing method.

• Preprocessed Data

Data preprocessed with selected methods.

Description

Preprocessing is crucial for achieving better-quality analysis results. The Preprocess widget offers five preprocessing
methods to improve data quality. In this widget, you can immediately discretize continuous values or continuize
discrete ones, impute missing values, select relevant features or center and scale them. Basically, this widget combines
four separate widgets for simpler processing.

1. List of preprocessors. You drag the preprocessors you wish to use to the right side of the widget.

2. Discretization of continuous values

3. Continuization of discrete values

4. Impute missing values or remove them.

5. Select the most relevant features by information gain, gain ratio, Gini index.

6. Select random features

7. Normalize features

8. Randomize

9. When the box is ticked (Send Automatically), the widget will communicate changes automatically. Alternatively,
click Send.

10. Produce a report.

Example

In the example below, we have used the adult data set and preprocessed the data. We continuized discrete values
(age, education and marital status...) as one attribute per value, we imputed missing values (replacing ? with average
values), selected 10 most relevant attributes by Information gain, centered them by mean and scaled by span. We can
observe the changes in the Data Table and compare it to the non-processed data.

Purge Domain

Removes unused attribute values and useless attributes, sorts the remaining values.

Signals

Inputs:

• Data

A data set.

76 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 77

Orange Visual Programming Documentation, Release 3

78 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Outputs:

• Data

A filtered data set

Description

Definitions of nominal attributes sometimes contain values which don’t appear in the data. Even if this does not happen
in the original data, filtering the data, selecting examplary subsets and alike can remove all examples for which the
attribute has some particular value. Such values clutter data presentation, especially various visualizations, and should
be removed.

After purging an attribute, it may become single-valued or, in extreme case, have no values at all (if the value of this
attribute was undefined for all examples). In such cases, the attribute can be removed.

A different issue is the order of attribute values: if the data is read from a file in a format in which values are not
declared in advance, they are sorted “in order of appearance”. Sometimes we would prefer to have them sorted
alphabetically.

1. Purge attributes.

2. Purge classes.

3. Purge meta attributes.

4. Information on the filtering process

5. Produce a report.

6. If Apply automatically is ticked, the widget will output data at each change of widget settings.

Such purification is done by the widget Purge Domain. Ordinary attributes and class attributes are treated separately.
For each, we can decide if we want the values sorted or not. Next, we may allow the widget to remove attributes with
less than two values or remove the class attribute if there are less than two classes. Finally, we can instruct the widget
to check which values of attributes actually appear in the data and remove the unused values. The widget cannot
remove values if it is not allowed to remove the attributes, since having attributes without values makes no sense.

The new, reduced attributes get the prefix “R”, which distinguishes them from the original ones. The values of new
attributes can be computed from the old ones, but not the other way around. This means that if you construct a
classifier from the new attributes, you can use it to classify the examples described by the original attributes. But not
the opposite: constructing a classifier from the old attributes and using it on examples described by the reduced ones
won’t work. Fortunately, the latter is seldom the case. In a typical setup, one would explore the data, visualize it, filter
it, purify it. . . and then test the final model on the original data.

Example

The Purge Domain widget would typically appear after data filtering, for instance when selecting a subset of visual-
ized examples.

In the above schema, we play with the adult.tab data set: we visualize it and select a portion of the data, which contains
only four out of the five original classes. To get rid of the empty class, we put the data through Purge Domain before
going on to the Box Plot widget. The latter shows only the four classes which are in the Purge Data output. To see the
effect of data purification, uncheck Remove unused class variable values and observe the effect this has on Box Plot.

Rank

Ranking of attributes in classification or regression data sets.

2.1. Data 79

Orange Visual Programming Documentation, Release 3

80 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 81

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

An input data set.

Outputs:

• Reduced Data

A data set whith selected attributes.

Description

The Rank widget considers class-labeled data sets (classification or regression) and scores the attributes according to
their correlation with the class.

1. Select attributes from the data table.

2. Data table with attributes (rows) and their scores by different scoring methods (columns)

3. Produce a report.

4. If ‘Send Automatically‘ is ticked, the widget automatically communicates changes to other widgets.

Scoring methods

1. Information Gain: the expected amount of information (reduction of entropy)

2. Gain Ratio: a ratio of the information gain and the attribute’s intrinsic information, which reduces the bias
towards multivalued features that occurs in information gain

3. Gini: the inequality among values of a frequency distribution

4. ANOVA: the difference between average vaules of the feature in different classes

82 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Information_gain_ratio
https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/One-way_analysis_of_variance

Orange Visual Programming Documentation, Release 3

5. Chi2: dependence between the feature and the class as measure by the chi-square statistice

6. ReliefF: the ability of an attribute to distinguish between classes on similar data instances

7. FCBF (Fast Correlation Based Filter): entropy-based measure, which also identifies redundancy due to pairwise
correlations between features

Example: Attribute Ranking and Selection

Below, we have used the Rank widget immediately after the File widget to reduce the set of data attributes and include
only the most informative ones:

Notice how the widget outputs a data set that includes only the best-scored attributes:

Example: Feature Subset Selection for Machine Learning

What follows is a bit more complicated example. In the workflow below, we first split the data into a training set and a
test set. In the upper branch, the training data passes through the Rank widget to select the most informative attributes,
while in the lower branch there is no feature selection. Both feature selected and original data sets are passed to their
own Test & Score widgets, which develop a Naive Bayes classifier and score it on a test set.

For data sets with many features, a naive Bayesian classifier feature selection, as shown above, would often yield a
better predictive accuracy.

Color

Set color legend for variables.

Signals

Inputs:

• Data

An input data set.

Outputs:

• Data

A data set with a new color legend.

2.1. Data 83

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Relief_(feature_selection)
https://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf

Orange Visual Programming Documentation, Release 3

84 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 85

Orange Visual Programming Documentation, Release 3

Description

The Color widget enables you to set the color legend in your visualizations according to your own preferences. This
option provides you with the tools for emphasizing your results and offers a great variety of color options for presenting
your data. It can be combined with most visualizations widgets.

1. A list of discrete variables. You can set the color of each variable by double-clicking on it and opening the Color
palette or the Select color window. The widget also enables text-editing. By clicking on a variable, you can
change its name.

2. A list of continuous variables. You can customize the color gradients by double-clicking on them. The widget
also enables text-editing. By clicking on a variable, you can change its name. If you hover over the right side
side of the gradient, Copy to all appears. You can then apply your customized color gradient to all variables.

3. Produce a report.

4. Apply changes. If Apply automatically is ticked, changes will be communicated automatically. Alternatively,
just click Apply.

Discrete variables

1. Choose a desired color from the palette of basic colors.

2. Move the cursor to choose a custom color from the color palette.

3. Choose a custom color from your previously saved color choices.

4. Specify the custom color by:

• entering the red, green, and blue components of the color as values between 0 (darkest) and 255 (brightest)

• entering the hue, saturation and luminescence components of the color as values in the range 0 to 255

5. Add the created color to your custom colors.

6. Click OK to save your choices or Cancel to exit the the color palette.

Numeric variables

1. Choose a gradient from your saved profiles. The default profile is already set.

2. The gradient palette

3. Select the left side of the gradient. Double clicking the color opens the Select Color window.

4. Select the right side of the gradient. Double clicking the color opens the Select Color window.

5. Pass through black.

6. Click OK to save your choices or Cancel to exit the color palette.

Example

We chose to work with the Iris data set. We opened the color palette and selected three new colors for the three types
of Irises. Then we opened the Scatter Plot widget and viewed the changes made to the scatter plot.

For our second example, we wished to demonstrate the use of the Color widget with continuous variables. We put
different types of Irises on the x axis and petal length on the y axis. We created a new color gradient and named it
greed (green + red). In order to show that sepal length is not a deciding factor in differentiating between different types
of Irises, we chose to color the points according to sepal width.

86 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 87

Orange Visual Programming Documentation, Release 3

88 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.1. Data 89

Orange Visual Programming Documentation, Release 3

90 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Visualize

Box Plot

Shows distribution of attribute values.

Signals

Inputs:

• Data

An input data set

Outputs:

• (None)

Description

The Box Plot widget shows the distributions of attribute values. It is a good practice to check any new data with this
widget to quickly discover any anomalies, such as duplicated values (e.g. gray and grey), outliers, and alike.

1. Select the variable you want to see plotted.

2.2. Visualize 91

Orange Visual Programming Documentation, Release 3

2. Choose Grouping to see box plots displayed by class.

3. When instances are grouped by class, you can change the display mode. Annotated boxes will display the
end values, the mean and the median, while compare medians and compare means will, naturally, compare the
selected value between class groups.

For continuous attributes the widget displays:

4. The mean (the dark blue vertical line)

5. Border values for the standard deviation of the mean. The blue highlighted area is the entire standard deviation
of the mean.

6. The median (yellow vertical line). The thin blue line represents the area between the first (25%) and the third
(75%) quantile, while the thin dotted line represents the entire range of values (from the lowest to the highest
value in the data set for the selected parameter).

7. Save image.

8. Produce a report.

For discrete attributes, the bars represent the number of instances with each particular attribute value. The plot shows
the number of different animal types in the Zoo data set: there are 41 mammals, 13 fish, 20 birds and so on.

92 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Standard_deviation#Standard_deviation_of_the_mean

Orange Visual Programming Documentation, Release 3

Example

The Box Plot widget is most commonly used immediately after the File widget to observe the statistical properties
of a data set. It is also useful for finding the properties of a specific data set, for instance a set of instances manually
defined in another widget (e.g. Scatterplot) or instances belonging to some cluster or a classification tree node, as
shown in the schema below.

Distributions

Displays value distributions for a single attribute.

Signals

Inputs:

• Data

An input data set.

Outputs:

2.2. Visualize 93

Orange Visual Programming Documentation, Release 3

94 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• (None)

Description

The Distributions widget displays the value distribution of discrete or continuous attributes. If the data contains a
class variable, distributions may be conditioned on the class.

For discrete attributes, the graph displayed by the widget shows how many times (e.g., in how many instances) each
attribute value appears in the data. If the data contains a class variable, class distributions for each of the attribute
values will be displayed as well (like in the snapshot below). In order to create this graph, we used the Zoo data set.

1. A list of variables for distributions display

2. If Bin continuous variables is ticked, the widget will discretize continuous variables by assigning them to inter-
vals. The number of intervals is set by precision scale. Alternatively, you can set smoothness for the distribution
curves of continuous variables.

3. The widget may be requested to display value distributions only for instances of certain class (Group by). Show
relative frequencies will scale the data by percentage of the data set.

4. Show probabilities.

2.2. Visualize 95

https://en.wikipedia.org/wiki/Frequency_distribution

Orange Visual Programming Documentation, Release 3

5. Save image saves the graph to your computer in a .svg or .png format.

6. Produce a report.

For continuous attributes, the attribute values are displayed as a function graph. Class probabilities for continuous
attributes are obtained with gaussian kernel density estimation, while the appearance of the curve is set with the
Precision bar (smooth or precise). For the purpose of this example, we used the Iris data set.

In class-less domains, the bars are displayed in gray. Here we set Bin continuous variables into 10 bins, which
distributes variables into 10 intervals and displays averages of these intervals as histograms (see 2. above). We used
the Housing data set.

Heat Map

Plots a heat map for a pair of attributes.

Signals

Inputs:

• Data

An input data set.

Outputs:

96 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.2. Visualize 97

Orange Visual Programming Documentation, Release 3

• Selected Data

A subset of instances that the user has manually selected from the map.

Description

Heat map is a graphical method for visualizing attribute values by class in a two-way matrix. It only works on data
sets containing continuous variables. The values are represented by color: the higher a certain value is, the darker
the represented color. By combining class and attributes on x and y axes, we see where the attribute values are the
strongest and where the weakest, thus enabling us to find typical features (discrete) or value range (continuous) for
each class.

1. The color scheme legend. Low and High are thresholds for the color palette (low for attributes with low values
and high for attributes with high values).

2. Merge data.

3. Sort columns and rows: - No Sorting (lists attributes as found in the data set) - Clustering (clusters data by
similarity) - Clustering with ordered leaves (maximizes the sum of similarities of adjacent elements)

4. Set what is displayed in the plot in Annotation & Legend. - If Show legend is ticked, a color chart will
be displayed above the map. - If Stripes with averages is ticked, a new line with attribute averages will be
displayed on the left. - Row Annotations adds annotations to each instance on the right. - Column Label
Positions places column labels in a selected place (None, Top, Bottom, Top and Bottom).

5. If Keep aspect ratio is ticked, each value will be displayed with a square (proportionate to the map).

6. If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.

7. Save image saves the image to your computer in a .svg or .png format.

8. Produce a report.

Example

The Heat Map below displays attribute values for the Housing data set. The aforementioned data set concerns the
housing values in the suburbs of Boston. The first thing we see in the map are the ‘B’ and ‘Tax’ attributes, which are
the only two colored in dark orange. The ‘B’ attribute provides information on the proportion of blacks by town and
the ‘Tax’ attribute informs us about the full-value property-tax rate per $10,000. In order to get a clearer heat map, we
then use the Select Columns widget and remove the two attributes from the data set. Then we again feed the data to the
Heat map. The new projection offers additional information. By removing ‘B’ and ‘Tax’, we can see other deciding
factors, namely ‘Age’ and ‘ZN’. The ‘Age’ attribute provides information on the proportion of owner-occupied units
built prior to 1940 and the ‘ZN’ attribute informs us about the proportion of non-retail business acres per town.

The Heat Map widget is a nice tool for discovering relevant features in the data. By removing some of the more
pronounced features, we came across new information, which was hiding in the background.

References

Housing Data Set

Scatter Plot

Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.

98 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Heat_map
https://archive.ics.uci.edu/ml/datasets/Housing

Orange Visual Programming Documentation, Release 3

2.2. Visualize 99

Orange Visual Programming Documentation, Release 3

100 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

An input data set.

• Data Subset

A subset of instances from the input data set.

• Features

A list of attributes.

Outputs:

• Selected Data

A subset of instances that the user manually selected from the scatterplot.

• Unselected Data

All other data (instances not included in the user’s selection).

Description

The Scatterplot widget provides a 2-dimensional scatterplot visualization for both continuous and discrete-valued
attributes. The data is displayed as a collection of points, each having the value of the x-axis attribute determining
the position on the horizontal axis and the value of the y-axis attribute determining the position on the vertical axis.
Various properties of the graph, like color, size and shape of the points, axis titles, maximum point size and jittering
can be adjusted on the left side of the widget. A snapshot below shows the scatterplot of the Iris data set with the
coloring matching of the class attribute.

1. Select the x and y attribute. Optimize your projection by using Rank Projections. This feature scores attribute
pairs by average classification accuracy and returns the top scoring pair with a simultaneous visualization update.
Set jittering to prevent the dots overlapping. If Jitter continuous values is ticked, continuous instances will be
dispersed.

2. Set the color of the displayed points (you will get colors for discrete values and grey-scale points for continuous).
Set label, shape and size to differentiate between points. Set symbol size and opacity for all data points. Set the
desired colors scale.

3. Adjust plot properties:

• Show legend displays a legend on the right. Click and drag the legend to move it.

• Show gridlines displays the grid behind the plot.

• Show all data on mouse hover enables information bubbles if the cursor is placed on a dot.

• Show class density colors the graph by class (see the screenshot below).

• Label only selected points allows you to select individual data instances and label them.

4. Select, zoom, pan and zoom to fit are the options for exploring the graph. The manual selection of data instances
works as an angular/square selection tool. Double click to move the projection. Scroll in or out for zoom.

5. If Send automatically is ticked, changes are communicated automatically. Alternatively, press Send.

6. Save Image saves the created image to your computer in a .svg or .png format.

7. Produce a report.

2.2. Visualize 101

https://en.wikipedia.org/wiki/Jitter

Orange Visual Programming Documentation, Release 3

102 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

For discrete attributes, jittering circumvents the overlap of points which have the same value for both axes, and there-
fore the density of points in the region corresponds better to the data. As an example, the scatterplot for the Titanic data
set, reporting on the gender of the passengers and the traveling class is shown below; without jittering, the scatterplot
would display only eight distinct points.

Here is an example of the Scatter Plot widget if the Show class density box is ticked.

Intelligent Data Visualization

If a data set has many attributes, it is impossible to manually scan through all the pairs to find interesting or useful
scatterplots. Orange implements intelligent data visualization with the Score Plots option in the widget. The goal of
optimization is to find scatterplot projections where instances are well separated.

To use this method, go to the Score Plots option in the widget, open the subwindow and press Start Evaluation. The
feature will return a list of attribute pairs by average classification accuracy score.

2.2. Visualize 103

Orange Visual Programming Documentation, Release 3

104 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Below, there is an example demonstrating the utility of ranking. The first scatterplot projection was set as the default
sepal width to sepal length plot (we used the Iris data set for simplicity). Upon running Score Plots optimization, the
scatterplot converted to a much better projection of petal width to petal length plot.

Explorative Data Analysis

The Scatterplot, as the rest of Orange widgets, supports zooming-in and out of part of the plot and a manual selection
of data instances. These functions are available in the lower left corner of the widget. The default tool is Select, which
selects data instances within the chosen rectangular area. Pan enables you to move the scatterplot around the pane.
With Zoom you can zoom in and out of the pane with a mouse scroll, while Reset zoom resets the visualization to its
optimal size. An example of a simple schema, where we selected data instances from a rectangular region and sent
them to the Data Table widget, is shown below. Notice that the scatterplot doesn’t show all 52 data instances, because
some data instances overlap (they have the same values for both attributes used).

Example

The Scatterplot can be combined with any widget that outputs a list of selected data instances. In the example below,
we combine Classification Tree and Scatterplot to display instances taken from a chosen classification tree node
(clicking on any node of the classification tree will send a set of selected data instances to the scatterplot and mark
selected instances with filled symbols).

Venn Diagram

Plots a Venn diagram for two or more data subsets.

2.2. Visualize 105

http://en.wikipedia.org/wiki/Venn_diagram

Orange Visual Programming Documentation, Release 3

106 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

An input data set

Outputs:

• Selected Data

A subset of instances that the user has manually selected from the diagram.

Description

The Venn Diagram widget displays logical relations between data sets. This projection shows two or more data sets
represented by circles of different colors. The intersections are subsets that belong to more than one data set. To
further analyze or visualize the subset, click on the intersection.

1. Information on the input data.

2. Select the identifiers by which to compare the data.

3. Tick Output duplicates if you wish to remove duplicates.

4. If Auto commit is on, changes are automatically communicated to other widgets. Alternatively, click Commit.

5. Save Image saves the created image to your computer in a .svg or .png format.

6. Produce a report.

Examples

The easiest way to use the Venn Diagram is to select data subsets and find matching instances in the visualization. We
use the breast-cancer data set to select two subsets with Select Rows widget - the first subset is that of breast cancer
patients aged between 40 and 49 and the second is that of patients with a tumor size between 20 and 29. The Venn
Diagram helps us find instances that correspond to both criteria, which can be found in the intersection of the two
circles.

2.2. Visualize 107

Orange Visual Programming Documentation, Release 3

108 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

The Venn Diagram widget can be also used for exploring different prediction models. In the following example,
we analysed 3 prediction methods, namely Naive Bayes, SVM Learner and Random Forest Learner, according to
their misclassified instances. By selecting misclassifications in the three Confusion Matrix widgets and sending them
to Venn diagram, we can see all the misclassification instances visualized per method used. Then we open Venn
Diagram and select, for example, the misclassified instances that were identified by all three methods (in our case 2).
This is represented as an intersection of all three circles. Click on the intersection to see this two instances marked in
the Scatterplot widget. Try selecting different diagram sections to see how the scatterplot visualization changes.

Linear Projection

A linear projection method with explorative data analysis.

Signals

Inputs:

• Data

An input data set

• Data Subset

A subset of data instances

Outputs:

• Selected Data

2.2. Visualize 109

Orange Visual Programming Documentation, Release 3

110 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

A data subset that the user has manually selected in the projection.

Description

This widget displays linear projections of class-labeled data. Consider, for a start, a projection of the Iris data set
shown below. Notice that it is the sepal width and sepal length that already separate Iris setosa from the other two,
while the petal length is the attribute best separating Iris versicolor from Iris virginica.

1. Axes in the projection that are displayed and other available axes.

2. Set the color of the displayed dots (you will get colored dots for discrete values and grey-scale dots for continu-
ous). Set opacity, shape and size to differentiate between instances.

3. Set jittering to prevent the dots from overlapping (especially for discrete attributes).

2.2. Visualize 111

https://en.wikipedia.org/wiki/Projection_(linear_algebra)
https://en.wikipedia.org/wiki/Jitter

Orange Visual Programming Documentation, Release 3

4. Select, zoom, pan and zoom to fit options for exploring the graph. Manual selection of data instances works as a
non-angular/free-hand selection tool. Double click to move the projection. Scroll in or out for zoom.

5. When the box is ticked (Auto commit is on), the widget will communicate the changes automatically. Alterna-
tively, click Commit.

6. Save Image saves the created image to your computer in a .svg or .png format.

7. Produce a report.

Example

The Linear Projection widget works just like other visualization widgets. Below, we connected it to the File widget
to see the set projected on a 2-D plane. Then we selected the data for further analysis and connected it to the Data
Table widget to see the details of the selected subset.

References

Koren Y., Carmel L. (2003). Visualization of labeled data using linear transformations. In Proceedings of IEEE
Information Visualization 2003, (InfoVis‘03). Available here.

Boulesteix A.-L., Strimmer K. (2006). Partial least squares: a versatile tool for the analysis of high-dimensional
genomic data. Briefings in Bioinformatics, 8(1), 32-44. Abstract here.

Scatter Map

Plots a scatter map for a pair of continuous attributes.

112 Chapter 2. Widgets

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3DDF0DB68D8AB9949820A19B0344C1F3?doi=10.1.1.13.8657&rep=rep1&type=pdf
http://bib.oxfordjournals.org/content/8/1/32.abstract

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

An input data set

Outputs:

• None

Description

A Scatter map is a graphical method for visualizing frequencies in a two-way matrix by color. The higher the occur-
rence of a certain value, the darker the represented color. By combining two values on x and y axes, we see where
the attribute combination is the strongest and where the weakest, thus enabling the user to find strong correlations or
representative instances.

2.2. Visualize 113

https://en.wikipedia.org/wiki/Scatter_plot

Orange Visual Programming Documentation, Release 3

1. Select the x and y attribute to be plotted.

2. Color the plot by attribute. You can also select which attribute instances you wish to see in the visualization by
clicking on them. At the bottom, you can select the color scale strength (linear, square root or logarithmic).

3. Sampling is enabled only when the widget is connected to the SQL Table widget. You can set the sampling time
for large data to speed up the analysis. Sharpen works for all data types and it will resize (sharpen) the squares
in the plot.

4. Save Image saves the created image to your computer in a .svg or .png format.

5. Produce a report.

Example

Below, you can see an example workflow for the Scatter Map widget. Notice that the widget only works with
continuous data, so you need to first continuize the data attributes you want to visualize. The Scatter map below
displays two attributes from the Iris data set, namely the petal width and petal length. Here, we can see the distribution
of width and length values per Iris type. You can see that the variety Iris setosa is distinctly separated from the other
two varieties by petal width and length and that the most typical values for these attributes are around 0.2 for petal
width and between 1.4 and 1.7 for petal length. This shows that petal width and length are good attributes for telling
Iris setosa apart from the other two varieties.

114 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Linear_function_(calculus)
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Logarithm#Logarithmic_scale

Orange Visual Programming Documentation, Release 3

Sieve Diagram

Plots a sieve diagram for a pair of attributes.

Signals

Inputs:

• Data

An input data set

Outputs:

• None

Description

A Sieve diagram is a graphical method for visualizing frequencies in a two-way contingency table and comparing
them to expected frequencies under assumption of independence. It was proposed by Riedwyl and Schüpbach in a
technical report in 1983 and later called a parquet diagram (Riedwyl and Schüpbach, 1994). In this display, the area
of each rectangle is proportional to the expected frequency, while the observed frequency is shown by the number
of squares in each rectangle. The difference between observed and expected frequency (proportional to the standard
Pearson residual) appears as the density of shading, using color to indicate whether the deviation from independence
is positive (blue) or negative (red).

1. Select the attributes you want to display in the sieve plot.

2. Score combinations enables you to fin the best possible combination of attributes.

3. Save Image saves the created image to your computer in a .svg or .png format.

4. Produce a report.

The snapshot below shows a sieve diagram for the Titanic data set and has the attributes sex and survived (the latter is
a class attribute in this data set). The plot shows that the two variables are highly associated, as there are substantial
differences between observed and expected frequencies in all of the four quadrants. For example, and as highlighted
in the balloon, the chance for surviving the accident was much higher for female passengers than expected (0.06 vs.
0.15).

Pairs of attributes with interesting associations have a strong shading, such as the diagram shown in the above snapshot.
For contrast, a sieve diagram of the least interesting pair (age vs. survival) is shown below.

Example

Below, we see a simple schema using the Titanic data set, where we use the Rank widget to select the best attributes
(the ones with the highest information gain, gain ratio or gini index) and feed them into the Sieve Diagram. This
displays the sieve plot for the two best attributes, which in our case are sex and status. We see that the survival rate on
the Titanic was very high for women of the first class and very low for female crew members.

The Sieve Diagram also features the Score Combinations option, which makes the ranking of attributes even easier.

2.2. Visualize 115

http://cnx.org/contents/d396c4ad-2fd7-47cd-be84-152b44880feb@2/What-is-an-expected-frequency

Orange Visual Programming Documentation, Release 3

116 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.2. Visualize 117

Orange Visual Programming Documentation, Release 3

118 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.2. Visualize 119

Orange Visual Programming Documentation, Release 3

120 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

References

Riedwyl, H., and Schüpbach, M. (1994). Parquet diagram to plot contingency tables. In Softstat ‘93: Advances in
Statistical Software, F. Faulbaum (Ed.). New York: Gustav Fischer, 293-299.

Pythagorean Tree

Pythagorean tree visualisation for classification or regression trees.

Signals

Inputs:

• Tree

A classification or regression tree model.

• Selected Data

A subset of instances that the user has manually selected from the Pythagorean tree.

Description

Pythagorean Trees are plane fractals that can be used to depict general tree hierarchies as presented in an article by
Fabian Beck and co-authors. In our case, they are used for visualizing and exploring tree models, such as Classification
Tree.

1. Information on the input tree model.

2. Visualization parameters:

• Depth: set the depth of displayed trees.

• Target class (for classification trees): the intensity of the color for nodes of the tree will correspond to the
probability of the target class. If None is selected, the color of the node will denote the most probable
class.

• Node color (for regression trees): node colors can correspond to mean or standard deviation of class value
of the training data instances in the node.

• Size: define a method to compute the size of the square representing the node. Normal will keep node sizes
correspond to the size of training data subset in the node. Square root and Logarithmic are the respective
transformations of the node size.

• Log scale factor is only enabled when logarithmic transformation is selected. You can set the log factor
between 1 and 10.

3. Plot properties:

• Enable tooltips: display node information upon hovering.

• Show legend: shows color legend for the plot.

4. Reporting:

2.2. Visualize 121

http://publications.fbeck.com/ivapp14-pythagoras.pdf

Orange Visual Programming Documentation, Release 3

122 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Save Image: save the visualization to a SVG or PNG file.

• Report: add visualization to the report.

Pythagorean Tree can visualize both classification and regression trees. Below is an example for regression tree. The
only difference between the two is that regression tree doesn’t enable coloring by class, but can color by class mean or
standard deviation.

Example

The workflow from the screenshot below demonstrates the difference between Classification Tree Viewer and
Pythagorean Tree. They can both visualize Classification Tree, but Pythagorean visualization takes less space and
is more compact, even for a small Iris flower data set. For both visualization widgets, we have hidden the control area
on the left by clicking on the splitter between control and visualization area.

Pythagorean Tree is interactive: click on any of the nodes (squares) to select training data instances that were associated
with that node. The following workflow explores these feature.

The selected data instances are shown as a subset in the Scatter Plot, sent to the Data Table and examined in the Box
Plot. We have used brown-selected data set in this example. The tree and scatter plot are shown below; the selected
node in the tree has a black outline.

References

Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing
Hierarchies. In IVAPP ‘14 Proceedings of the 5th International Conference on Information Visualization Theory and
Applications, 17-28.

2.2. Visualize 123

https://en.wikipedia.org/wiki/Iris_flower_data_set
http://publications.fbeck.com/ivapp14-pythagoras.pdf
http://publications.fbeck.com/ivapp14-pythagoras.pdf

Orange Visual Programming Documentation, Release 3

124 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Pythagorean Forest

Pythagorean forest for visualising random forests.

Signals

Inputs:

• Random Forest

Classification / regression tree models as random forest.

Outputs:

• Tree

A selected classification / regression tree model.

Description

Pythagorean Forest shows all learned classification tree models from Random Forest widget. It displays then as
Pythagorean trees, each visualization pertaining to one randomly constructed tree. In the visualization, you can select

2.2. Visualize 125

Orange Visual Programming Documentation, Release 3

a tree and display it in Pythagorean Tree wigdet. The best tree is the one with the shortest and most strongly colored
branches. This means few attributes split the branches well.

Widget displays both classification and regression results. Classification requires discrete target variable in the data set
and a Classification Tree widget on the input, while regression requires a continuous target variable with Regression
Tree on the input.

1. Information on the input random forest model.

2. Display parameters:

• Depth: set the depth to which the trees are grown.

• Target class: set the target class for coloring the trees. If None is selected, tree will be white. If the input
is a classification tree, you can color nodes by their respective class. If the input is a regression tree, the
options are Class mean, which will color tree nodes by the class mean value and Standard deviation, which
will color then by the standard deviation value of the node.

• Size: set the size of the nodes. Normal will keep nodes the size of the subset in the node. Square root and
Logarithmic are the respective transformations of the node size.

• Zoom: allows you to se the size of the tree visualizations.

3. Save Image: save the visualization to your computer as a .svg or .png file. Report: produce a report.

Example

Pythagorean Forest is great for visualizing several built trees at once. In the example below, we’ve plotted all 10
trees we’ve grown with Random Forest Regression. When changing the parameters in Random Forest Regression,
visualization in Pythagorean Forest will change as well.

Then we’ve selected a tree in the visualization and inspected it further with Pythagorean Tree widget.

126 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.2. Visualize 127

Orange Visual Programming Documentation, Release 3

References

Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing
Hierarchies. In IVAPP ‘14 Proceedings of the 5th International Conference on Information Visualization Theory and
Applications, 17-28.

CN2 Rule Viewer

CN2 Rule Viewer

Signals

Inputs:

• Data

Data set to filter.

• CN2 Rule Classifier

CN2 Rule Classifier, including a list of induced rules.

Outputs:

• Filtered Data

If data is connected, upon active selection (at least one rule is selected), filtered data is emitted.
Output are data instances covered by all selected rules.

Description

A widget that displays CN2 classification rules. If data is also connected, upon rule selection, one can analyze which
instances abide to the conditions.

1. Original order of induced rules can be restored.

2. When rules are many and complex, the view can appear packed. For this reason, compact view was implemented,
which allows a flat presentation and a cleaner inspection of rules.

3. Click Report to bring up a detailed description of the rule induction algorithm and its parameters, the data
domain, and induced rules.

Additionally, upon selection, rules can be copied to clipboard by pressing the default system shortcut (ctrl+C, cmd+C).

Examples

In the schema below, the most common use of the widget is presented. First, the data is read and a CN2 rule classifier
is trained. We are using titanic data set for the rule constrution. The rules are then viewed using the Rule Viewer.
To explore different CN2 algorithms and understand how adjusting parameters influences the learning process, Rule
Viewer should be kept open and in sight, while setting the CN2 learning algorithm (the presentation will be updated
promptly).

Selecting a rule outputs filtered data instances. These can be viewed in a Data Table.

128 Chapter 2. Widgets

https://en.wikipedia.org/wiki/CN2_algorithm

Orange Visual Programming Documentation, Release 3

2.2. Visualize 129

Orange Visual Programming Documentation, Release 3

Mosaic Display

Display data in a mosaic plot.

Signals

Inputs:

• Data

An input data set.

• Data subset

An input data subset.

Outputs:

• Selected data

A subset of instances that the user has manually selected from the plot.

Description

The Mosaic plot is a graphical representation of a two-way frequency table or a contingency table. It is used for
visualizing data from two or more qualitative variables and was introduced in 1981 by Hartigan and Kleiner and ex-
panded and refined by Friendly in 1994. It provides the user with the means to more efficiently recognize relationships
between different variables. If you wish to read up on the history of Mosaic Display, additional reading is available
here.

1. Select the variables you wish to see plotted.

2. Select interior coloring. You can color the interior according to class or you can use the Pearson residual, which
is the difference between observed and fitted values, divided by an estimate of the standard deviation of the
observed value. If Compare to total is clicked, a comparison is made to all instances.

3. Save image saves the created image to your computer in a .svg or .png format.

4. Produce a report.

Example

We loaded the titanic data set and connected it to the Mosaic Display widget. We decided to focus on two variables,
namely status, sex and survival. We colored the interiors according to Pearson residuals in order to demonstrate the
difference between observed and fitted values.

We can see that the survival rates for men and women clearly deviate from the fitted value.

Silhouette Plot

A graphical representation of consistency within clusters of data.

130 Chapter 2. Widgets

http://www.datavis.ca/papers/moshist.pdf

Orange Visual Programming Documentation, Release 3

2.2. Visualize 131

Orange Visual Programming Documentation, Release 3

132 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs

• Data

A data set.

Outputs

• Selected Data

A subset of instances that the user has manually selected from the plot.

• Other Data

Remaining data.

Description

The Silhouette Plot widget offers a graphical representation of consistency within clusters of data and provides the
user with the means to visually assess cluster quality. The silhouette score is a measure of how similar an object is to
its own cluster in comparison to other clusters and is crucial in the creation of a silhoutte plot. The silhouette score
close to 1 indicates that the data instance is close to the center of the cluster and instances posessing the silhouette
scores close to 0 are on the border between two clusters.

1. Choose the distance metric. You can choose between:

• Euclidean (“straight line”, distance between two points)

• Manhattan (the sum of absolute differences for all attributes)

2. Select the cluster label. You can decide whether to group the instances by cluster or not.

3. Display options:

• Choose bar width.

• Annotations: annotate the silhouette plot.

4. Save Image saves the created silhouette plot to your computer in a .png or .svg format.

5. Produce a report.

6. Output:

• Add silhouette scores (good clusters have higher silhoutte scores)

• By clicking Commit, changes are comminicated to the output of the widget. Alternatively, tick the box on
the left and changes will be communicated automatically.

7. The created silhouette plot.

Example

In the snapshot below, we have decided to use the Silhoutte Plot on the iris data set. We selected data intances with
low silhouette scores and passed them on as a subset to the Scatter Plot widget. This visualization only confirms the
accuracy of the Silhouette Plot widget, as you can clearly see that the subset lies in the border between two clusters.

If you are interested in other uses of the Silhouette Plot widget, feel free to explore our blog post.

2.2. Visualize 133

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wiktionary.org/wiki/Manhattan_distance
http://blog.biolab.si/2016/03/23/all-i-see-is-silhouette/

Orange Visual Programming Documentation, Release 3

134 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Tree Viewer

A visualization of classification and regression trees.

Signals

Inputs:

• Tree

Classification or regression tree.

Outputs:

• Selected Data

Data from a selected tree node.

• Data

Data set with an additional attribute for selection labels.

2.2. Visualize 135

Orange Visual Programming Documentation, Release 3

Description

This is a versatile widget with 2-D visualization of a classification tree. The user can select a node, instructing the
widget to output the data associated with the node, thus enabling explorative data analysis.

1. Information on the input.

2. Display options:

• Zoom in and zoom out

• Select the tree width. The nodes display information bubbles when hovering over them.

• Select the depth of your tree.

• Select edge width. The edges between the nodes in the tree graph are drawn based on the selected edge width.

– All the edges will be of equal width if Fixed is chosen.

– When Relative to root is selected, the width of the edge will correspond to the proportion of
instances in the corresponding node with respect to all the instances in the training data. Under
this selection, the edge will get thinner and thinner when traversing toward the bottom of the tree.

– Relative to parent makes the edge width correspond to the proportion of instances in the nodes
with respect to the instances in their parent node.

• Define the target class, which you can change based on classes in the data.

3. Press Save image to save the created classification tree graph to your computer as a .svg or .png file.

136 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Decision_tree_learning

Orange Visual Programming Documentation, Release 3

4. Produce a report.

Examples

Below, is a simple schema, where we have read the data, constructed the classification tree and viewed it in our tree
viewer. If both the viewer and Classification Tree are open, any re-run of the tree induction algorithm will immediately
affect the visualization. You can thus use this combination to explore how the parameters of the induction algorithm
influence the structure of the resulting tree.

Clicking on any node will output the related data instances. This is explored in the schema below that shows the subset
in the data table and in the Scatterplot. Make sure that the tree data is passed as a data subset; this can be done by
connecting the Scatterplot to the File widget first, and connecting it to the Classification Tree Viewer widget next.
Selected data will be displayed as bold dots.

Tree Viewer can also export labelled data. Connect Data Table to Tree Viewer and set the link between widgets to
Data instead of Selected Data. This will send the entire data to Data Table with an additional meta column labelling
selected data instances (Yes for selected and No for the remaining).

Finally, Tree Viewer can be used also for visualizing regression trees. Connect Regression Tree to File widget using
housing.tab data set. Then connect Tree Viewer to Regression Tree. The widget will display the constructed tree.
For visualizing larger trees, especially for regression, Pythagorean Tree could be a better option.

2.2. Visualize 137

Orange Visual Programming Documentation, Release 3

138 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Geo Map

Show data points on a world map.

Signals

Inputs:

• Data

An input data set.

• Data Subset

A subset of instances from the input data set.

• Learner

A learning algorithm (classification or regression).

Outputs:

• Selected Data

A subset of instances that the user has manually selected from the map.

• Data

Data set with an appended meta attribute specifying selected and unselected data.

Description

Geo Map widget maps geo-spatial data on a world map. It only works on data sets containing latitude and longitude
variables. It also enables class predictions when a learner is provided on the input.

1. Define map properties: - Set the type of map: Black and White, OpenStreetMap, Topographic, Satellite, Print,
Light, Dark, Railyways and Watercolor. - Set latitude and longitude attributes, if the widget didn’t recognize
them automatically. Latitude values should be between -90(S) and 90(N) and longitude values between -180(W)
and 180(E).

2. Overlay: - Set the target (class) for predictive mapping. A learner has to be provided on the input. The classifier
is trained on latitude and longitude pairs only (i.e. it maps lat/lon pairs to the selected attribute).

3. Set point parameters: - Color: color of data points by attribute values - Label: label data points with an attribute
(available when zoomed in) - Shape: shape of data points by attribute (available when zoomed in) - Size: size
of data points by attribute - Opacity: set transparency of data points - Symbol size: size of data points (small
to large) - Jittering: disperse overlaid data points - Cluster points: cluster neighboring points with naive greedy
clustering (available when less than 600 points are in view)

4. If Send Selection Automatically is ticked, changes are communicated automatically. Alternatively, click Send
Selection. Save image saves the image to your computer in a .svg or .png format.

Note: To select a subset of points from the map, hold Shift and draw a rectangle around the point you want to output.

2.2. Visualize 139

http://www.openstreetmap.org
https://github.com/Leaflet/Leaflet.markercluster
https://github.com/Leaflet/Leaflet.markercluster

Orange Visual Programming Documentation, Release 3

Examples

In the first example we will model class predictions on a map. We will use philadelphia-crime data set, load it with File
widget and connect it to Map. We can already observe the mapped points in Map. Now, we connect Classification
Tree to Map and set target variable to Type. This will display the predicted type of crime for a specific region of
Philadelphia city (each region will be colored with a corresponding color code, explained in a legend on the right).

The second example uses global-airports.csv data. Say we somehow want to predict the altitude of the area based
soley on the latitude and longitude. We again load the data with File widget and connect it to Map. Then we use a
regressor, say, KNN and connect it to Map as well. Now we set target to altitude and use Black and White map type.
The model guessed the Himalaya, but mades some errors elsewhere.

Nomogram

Nomograms for visualization of Naive Bayes and Logistic Regression classifiers.

Signals

Inputs:

• Classifier

A trained classifier (Naive Bayes or Logistic regression).

• Data

Data instance.

140 Chapter 2. Widgets

https://raw.githubusercontent.com/ajdapretnar/datasets/master/data/global_airports.csv

Orange Visual Programming Documentation, Release 3

Description

The Nomogram enables some classifier’s (more precisely Naive Bayes classifier and Logistic Regression classifier)
visual representation. It offers an insight into the structure of the training data and effects of the attributes on the
class probabilities. Besides visualization of the classifier, the widget offers interactive support to prediction of class
probabilities. A snapshot below shows the nomogram of the Titanic data set, that models the probability for a passenger
not to survive the disaster of the Titanic.

1. Select the target class you want to model the probability for.

2. By default Scale is set to Log odds ration. For easier understanding and interpretation option Point scale can
be used. The unit is obtained by re-scaling the log odds so that the maximal absolute log odds ratio in the
nomogram represents 100 points.

3. When there are to many attributes in the plotted data set, you can choose to display only best ranked ones.
It is possible to choose from ‘No sorting’, ‘Name’, ‘Absolute importance’, ‘Positive influence’ and ‘Negative
influence’ for Naive Bayes representation and from ‘No sorting’, ‘Name’ and ‘Absolute importance’ for Logistic
Regression representation.

To represent nomogram for Logistic Regressing classifier Iris data set is used:

1. The probability for the chosen target class is computed by 1. vs. all principle, which should be taken in consider-
ation when dealing with multiclass data (alternating probabilities do not sum to 1). To avoid this inconvenience,
you can choose to normalize probabilities.

2. Continuous attributes can be plotted in 2D (only for Logistic Regression).

3. Save image.

4. Produce a report.

2.2. Visualize 141

Orange Visual Programming Documentation, Release 3

142 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.2. Visualize 143

Orange Visual Programming Documentation, Release 3

Example

The Nomogram widget should be used immediately after trained classifier widget (e.g. Naive Bayes. It can also be
passed a data instance using any widget that enables selection (e.g. Data Table) as shown in the workflow below.

Referring to the Titanic data set once again, 1490 (68%) of passengers on Titanic, of 2201 in total, died. To make a
prediction, the contribution of each attribute is measured as a point score and the individual point scores are summed
to determine the probability. When the value of the attribute is unknown, its contribution is 0 points. Therefore,
not knowing anything about the passenger, the total point score is 0, and the corresponding probability equals to the
unconditional prior. The nomogram in the example shows the case when we know that the passenger is a male adult
from the first class. The points sum to -0.36, with a corresponding probability of not surviving of about 53%.

Classify

Naive Bayes

144 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Naive Bayesian Learner

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessed data

Outputs:

• Learner

A Naive Bayesian learning algorithm with settings as specified in the dialog. It can be fed into widgets for
testing learners.

• Naive Bayesian Classifier

A trained classifier (a subtype of Classifier). The Naive Bayesian Classifier signal sends data only if the learning
data (signal Data) is present.

Description

This widget has two options: the name under which it will appear in other widgets and producing a report. The default
name is Naive Bayes. When you change it, you need to press Apply.

Examples

Here, we present two uses of this widget. First, we compare the results of the Naive Bayesian learner with another
learner, the Random Forest.

The second schema shows the quality of predictions made with Naive Bayes. We feed the Test&Score widget a Naive
Bayes learner and then send the data to the Confusion Matrix. In this widget, we select the misclassified instances and
show them in Scatterplot. The bold dots in the scatterplot are the misclassified instances from Naive Bayes.

2.3. Classify 145

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Orange Visual Programming Documentation, Release 3

146 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.3. Classify 147

Orange Visual Programming Documentation, Release 3

Logistic Regression

Logistic Regression Learner

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessed data

Outputs:

• Learner

A logistic regression learning algorithm with settings as specified in the dialog.

• Logistic Regression Classifier

A trained classifier (a subtype of Classifier). The Logistic Regression Classifier sends data only if data input is
present.

Description

1. A name under which the learner appears in other widgets. The default name is “Logistic Regression”.

2. Regularization type (either L1 or L2). Set the cost strength (default is C=1).

3. Press Apply to commit changes. If Apply Automatically is ticked, changes will be communicated automatically.

148 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Tikhonov_regularization

Orange Visual Programming Documentation, Release 3

Example

The widget is used just as any other widget for inducing a classifier. This is an example demonstrating the prediction
value of logistic regression used on the voting.tab data set. We first use the Logistic Regression learner to provide
a LR classifier for the Predictions widget. We want to see the quality of LR prediction model for a person being a
republican or a democrat, based on their voting patterns. In Select Columns we choose logistic regression as the feature
and party as the class. Then we use the Scatterplot to see which instances were correctly predicted and which were
false.

Classification Tree

Classification Tree

Signals

Inputs:

2.3. Classify 149

Orange Visual Programming Documentation, Release 3

• Data

A data set

• Preprocessor

Preprocessed data.

Outputs:

• Learner

A classification tree learning algorithm with settings as specified in the dialog.

• Classification Tree

A trained classifier (a subtype of Classifier). The signal Classification Tree sends data only if the learning data
(signal Classified Data) is present.

Description

Classification Tree is a simple classification algorithm that splits the data into nodes by class purity. It is a precursor
to Random Forest. Classification Tree in Orange is designed in-house and can handle both discrete and continuous
data sets.

1. The learner can be given a name under which it will appear in other widgets. The default name is “Classification
Tree”.

2. Tree parameters: - Induce binary tree: build a binary tree (split into two child nodes) - Min. number of
instances in leaves: if checked, the algorithm will never construct a split which would put less than the specified
number of training examples into any of the branches. - Do not split subsets smaller than: forbids the algorithm
to split the nodes with less than the given number of instances. - Stop when majority reaches [%]: stop splitting

150 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

the nodes after a specified majority threshold is reached - Limit the maximal tree depth: limits the depth of
the classification tree to the specified number of node levels.

3. Produce a report. After changing the settings, you need to click Apply, which will put the new learner in the
output and, if the training examples are given, construct a new classifier and output it as well. Alternatively, tick
the box on the left and changes will be communicated automatically.

Examples

There are two typical uses for this widget. First, you may want to induce a model and check what it looks like. You
do it with the schema below; to learn more about it, see the documentation on Tree Viewer.

The second schema checks the nodes of the built tree.

We used the Iris data set in both examples.

Nearest Neighbors

k-Nearest Neighbors (kNN) learner

Signals

Inputs:

2.3. Classify 151

Orange Visual Programming Documentation, Release 3

152 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Data

A data set

• Preprocessor

Preprocessed data

Outputs:

• Learner

A kNN learning algorithm with settings as specified in the dialog.

• kNN Classifier

Trained classifier (a subtype of Classifier). Signal kNN Classifier sends data only if the learning data (signal
Data is present).

Description

1. A name under which it will appear in other widgets. The default name is “kNN”.

2. You can set the Number of neighbors.

3. The Metrics you can use are:

• Euclidean

• Manhattan (the sum of absolute differences for all attributes)

• Chebyshev (the maximal difference between attributes)

• Mahalanobis (difference between an attribute and the mean).

4. You can assign weight to the contributions of the neighbors. The Weights you can use are:

• Uniform: all points in each neighborhood are weighted equally.

2.3. Classify 153

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Chebyshev_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance

Orange Visual Programming Documentation, Release 3

• Distance: closer neighbors of a query point have a greater influence than the neighbors further away.

5. Produce a report.

6. When you change one or more settings, you need to click Apply, which will put a new learner in the output and,
if the training examples are given, construct a new classifier and output it as well. Changes can also be applied
automatically by clicking the box on the left side of the Apply button.

Example

This schema compares the results of k-Nearest neighbors with the default classifier, which always predicts the majority
class.

Load Classifier

Loads an existing classifier

Signals

Inputs:

• None

154 Chapter 2. Widgets

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Orange Visual Programming Documentation, Release 3

Outputs:

• Classifier

A classifier with selected parameters.

Description

1. Choose from a list of previously used classifiers.

2. Browse for saved classifiers.

3. Reload the selected classifier.

Example

When you want to use a custom-set classifier that you’ve saved before, open the Load Classifier widget and select
the desired file with the Browse icon. This widget loads the exisiting classifier into Predictions widget for predicting
classes.

Majority

A learner that returns a majority class in a data set for all instances.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessed data

Outputs:

• Learner

A majority learning algorithm

• Classifier

A trained classifier. In the output only if the learning data (signal Data) is present.

2.3. Classify 155

Orange Visual Programming Documentation, Release 3

156 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Description

This learner produces a classifier that always predicts the majority class. When asked for probabilities, it will return
the relative frequencies of the classes in the training set. When there are two or more majority classes, the classifier
chooses the predicted class randomly, but always returns the same class for a particular example.

The widget is typically used to compare other learning algorithms with the default classification accuracy.

This widget provides the user with two options:

1. The name under which it will appear in other widgets (the default name is “Majority”).

2. Producing a report.

If you change the widget’s name, you need to click Apply. Alternatively, tick the box on the left side and changes will
be communicated automatically.

Example

In a typical use of this widget, it would be connected to Test&Score to compare the scores of other learning algorithms
(such as kNN) with the default scores.

Random Forest Classification

Random forest learning algorithm.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessed data

Outputs:

• Learner

A random forest learning algorithm with settings as specified in the dialog.

2.3. Classify 157

https://en.wikipedia.org/wiki/Predictive_modelling#Majority_classifier

Orange Visual Programming Documentation, Release 3

158 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Random Forest Classifier

A trained classifier.

Description

Random forest is a classification technique proposed by (Breiman, 2001). When given a set of class-labeled data,
Random Forest builds a set of classification trees. Each tree is developed from a bootstrap sample from the training
data. When developing individual trees, an arbitrary subset of attributes is drawn (hence the term “random”), from
which the best attribute for the split is selected. Classification is based on the majority vote from individually developed
tree classifiers in the forest.

1. Specify the name of the learner or classifier. The default name is “Random Forest Classification”.

2. Specify how many classification trees will be included in the forest (Number of trees in the forest), and how
many attributes will be arbitrarily drawn for consideration at each node. If the latter is not specified (option
Consider a number... left unchecked), this number is equal to the square root of the number of attributes in the
data.

3. Original Brieman’s proposal is to grow the trees without any pre-prunning, but since pre-pruning often works
quite well and is faster, the user can set the depth to which the trees will be grown (Limit depth of individual
trees). Another pre-pruning option is to select the smallest subset that can be split (Do not split subsets smaller
than)

4. Produce a report.

2.3. Classify 159

https://en.wikipedia.org/wiki/Random_forest

Orange Visual Programming Documentation, Release 3

5. Click Apply to communicate the changes to other widgets. Alternatively, tick the box on the left side of the
Apply button and changes will be communicated automatically.

Example

The example below shows a comparison schema of a random forest and a tree learner on a specific data set.

References

Breiman, L. (2001). Random Forests. In Machine Learning, 45(1), 5-32. Available here

Save Classifier

Saves classifier

160 Chapter 2. Widgets

http://download.springer.com/static/pdf/639/art%253A10.1023%252FA%253A1010933404324.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1010933404324&token2=exp=1434636672~acl=%2Fstatic%2Fpdf%2F639%2Fart%25253A10.1023%25252FA%25253A1010933404324.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1023%252FA%253A1010933404324*~hmac=93fc12faf46899d3cca65e325a946afa897da2a05495736982e04585f9ee6ff3

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Classifier

A classifier with selected parameters

Outputs:

• None

Description

1. Choose from previously saved classifiers.

2. Save the created classifier with the Browse icon. Click on the icon and enter the name of the file. The classifier
will be saved to a pickled fie.

3. Save the classifier.

Example

When you want to save a custom-set classifier, select the desired parameters in the classification widget and connect it
to Save Classifier. Name the classifier; load it later into workflows with data sets containing compatible attributes.

SVM

Support vector machine learning algorithm.

Signals

Inputs:

2.3. Classify 161

Orange Visual Programming Documentation, Release 3

162 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Data

A data set.

• Preprocessor

Preprocessed data.

Outputs:

• Learner

A support vector machine learning algorithm with settings as specified in the dialog.

• Classifier

A trained SVM classifier

• Support Vectors

A subset of data instances from the training set that were used as support vectors in the trained classifier

Description

Support vector machine (SVM) is a classification technique that separates the attribute space with a hyperplane, thus
maximizing the margin between the instances of different classes. The technique often yields supreme predictive
performance results. Orange embeds a popular implementation of SVM from the LIBSVM package. This widget is
its graphical user interface.

1. The learner can be given a name under which it will appear in other widgets. The default name is “SVM”.

2. Classification type with test error settings. C-SVM and v-SVM are based on different minimization of the error
function. On the right side, you can set test error bounds, Cost for C-SVM and Complexity bound for v-SVM.

3. The next block of options deals with kernel, a function that transforms attribute space to a new feature space to fit
the maximum-margin hyperplane, thus allowing the algorithm to create non-linear classifiers with Polynomial,
RBF and Sigmoid kernels. Functions that specify the kernel are presented besides their names, and the constants
involved are:

• g for the gamma constant in kernel function (the recommended value is 1/k, where k is the number of the
attributes, but since there may be no training set given to the widget the default is 0 and the user has to set
this option manually),

• c for the constant c0 in the kernel function (default 0), and

• d for the degree of the kernel (default 3).

4. Set permitted deviation from the expected value in Numerical Tolerance. Tick the box next to Iteration Limit to
set the maximum number of iterations permitted.

5. Produce a report.

6. Click Apply to commit changes. If you tick the box on the left side of the Apply button, changes will be
communicated automatically.

Examples

There are two typical uses for this widget, one where the widget is a classifier and the other where it constructs an
object for learning. For the first one, we have split our data set into two data subsets (Sample and Remaining Examples).
The sample was sent to SVM which produced a Classifier, which was then used in Predictions widget to classify the
data in Remaning Examples. A similar schema can be used if the data is already in two separate files; in this case, two
File widgets would be used instead of the File - Data Sampler combination.

2.3. Classify 163

https://en.wikipedia.org/wiki/Support_vector_machine
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.quora.com/What-are-C-and-gamma-with-regards-to-a-support-vector-machine
https://en.wikipedia.org/wiki/Polynomial_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/#sigmoid

Orange Visual Programming Documentation, Release 3

164 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

The second schema shows how to use the SVM widget to construct a learner and compare it in cross-validation with
Majority and k-Nearest Neighbours learners.

The following schema observes a set of support vectors in a Scatterplot visualization.

For the above schema to work correctly, the channel between SVM and Scatterplot widget has to be set appropriately.
Set the channel between these two widgets by double-clicking on the connection between the widgets and use the
settings as displayed in the dialog below.

References

Introduction to SVM on StatSoft.

CN2 Rule Induction

CN2 Rule Induction

Signals

Inputs

• Data

Data set.

• Preprocessor

Preprocessed data.

2.3. Classify 165

http://www.statsoft.com/Textbook/Support-Vector-Machines

Orange Visual Programming Documentation, Release 3

166 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.3. Classify 167

Orange Visual Programming Documentation, Release 3

Outputs

• Learner

The CN2 learning algorithm with settings as specified in the dialog.

• CN2 Rule Classifier

Trained classifier (a subtype of Classifier). CN2 Rule Classifier is only trained and forwarded if learning data
is connected.

Description

The CN2 algorithm is a classification technique designed for the efficient induction of simple, comprehensible rules
of form “if cond then predict class”, even in domains where noise may be present.

168 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

1. Name under which the learner appears in other widgets. The default name is CN2 Rule Induction.

2. Rule ordering:

• Ordered; induce ordered rules (decision list). Rule conditions are found and the majority class is assigned
in the rule head.

• Unordered; induce unordered rules (rule set). Learn rules for each class individually, in regard to the
original learning data.

3. Covering algorithm:

• Exclusive; after covering a learning instance, remove it from further consideration.

• Weighted; after covering a learning instance, decrease its weight (multiplication by gamma) and in-turn
decrease its impact on further iterations of the algorithm.

4. Rule search:

• Evaluation measure; select a heuristic to evaluate found hypotheses:

(a) Entropy (measure of unpredictability of content)

(b) Laplace Accuracy

(c) Weighted Relative Accuracy

• Beam width; remember the best rule found thus far and monitor a fixed number of alternatives (the beam).

5. Rule filtering:

• Minimum rule coverage; found rules must cover at least the minimum required number of covered ex-
amples. Unordered rules must cover this many target class examples.

• Maximum rule length; found rules may combine at most the maximum allowed number of selectors
(conditions).

• Default alpha; significance testing to prune out most specialised (less frequently applicable) rules in
regard to the initial distribution of classes.

• Parent alpha; significance testing to prune out most specialised (less frequently applicable) rules in regard
to the parent class distribution.

6. Tick ‘Apply Automatically’ to auto-communicate changes to other widgets and to immediately train the classi-
fier if learning data is connected. Alternatively, press ‘Apply‘ after configuration.

Examples

Having trained the model, induced rules can be quickly reviewed and interpreted. Showcased in the example below is
the CN2 Rule Viewer widget .

The second schema tests the accuracy of the algorithm, compares its performance to the Classification Tree on a
specific data set, and presents a standard use of the widget.

References

1. “Separate-and-Conquer Rule Learning”, Johannes Fürnkranz, Artificial Intelligence Review 13, 3-54, 1999

2. “The CN2 Induction Algorithm”, Peter Clark and Tim Niblett, Machine Learning Journal, 3 (4), pp261-283,
(1989)

3. “Rule Induction with CN2: Some Recent Improvements”, Peter Clark and Robin Boswell, Machine Learning -
Proceedings of the 5th European Conference (EWSL-91), pp151-163, 1991

2.3. Classify 169

https://en.wikipedia.org/wiki/Entropy_(information_theory)

Orange Visual Programming Documentation, Release 3

170 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

4. “Subgroup Discovery with CN2-SD”, Nada Lavrač et al., Journal of Machine Learning Research 5 (2004),
153-188, 2004

AdaBoost

An ensemble meta-algorithm that combines multiple weak learners to build to build more accurate prediction models.

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessed data.

• Learner

A learning algorithm.

Outputs:

• Learner

AdaBoost learning algorithm with settings as specified in the dialog.

• Classifier

Trained classifier (a subtype of Classifier). The AdaBoost classifier signal sends data only if the learning data
(signal Data) is present.

Description

The AdaBoost (short for “Adaptive boosting”) widget is a machine-learning algorithm, formulated by Yoav Freund
and Robert Schapire. It can be used with other learning algorithms to boost their performance. It does so by tweaking
the weak learners.

1. The learner can be given a name under which it will appear in other widgets. The default name is “AdaBoost”.

2. Set the parameters. The base estimator is a tree and you can set:

• the Number of estimators

• the Learning rate: it determines to what extent the newly acquired information will override the old
information (0 = the agent will not learn anything, 1 = the agent considers only the most recent information)

• the Algorithm: SAMME (updates base estimator’s weights with classification results) or SAMME.R.
(updates base estimator’s weight with probability estimates)

3. Produce a report.

2.3. Classify 171

https://en.wikipedia.org/wiki/AdaBoost
https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf
https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf

Orange Visual Programming Documentation, Release 3

4. Click Apply after changing the settings. That will put the new learner in the output and, if the training examples
are given, construct a new classifier and output it as well. To communicate changes automatically tick Apply
Automatically.

Examples

For our first example, we loaded the Iris data set and compared the results of two different classification algorithms
against the AdaBoost widget.

For our second example, we loaded the Iris data set, sent the data instances to several different classifiers (AdaBoost,
Classification Tree, Logistic Regression) and output them in the Predictions widget.

Regression

Linear Regression

Learns a linear function of its input data.

Signals

Inputs:

• Data

A data set

172 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.4. Regression 173

Orange Visual Programming Documentation, Release 3

• Preprocessor

A preprocessed data set.

Outputs:

• Learner

A learning algorithm with the supplied parameters

• Predictor

A trained regressor. Signal Predictor sends the output signal only if signal Data is present.

Description

The Linear Regression widget constructs a learner/predictor that learns a linear function from its input data. The
model can identify the relationship between a predictor xi and the response variable y. Additionally, Lasso and Ridge
regularization parameters can be specified. Lasso regression minimizes a penalized version of the least squares loss
function with L1-norm penalty and Ridge regularization with L2-norm penalty.

1. The learner/predictor name

2. Choose a model to train:

• no regularization

• a Ridge regularization (L2-norm penalty)

174 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Least_squares#Lasso_method

Orange Visual Programming Documentation, Release 3

• a Lasso bound (L1-norm penalty)

• an Elastic net regularization

3. Produce a report.

4. Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.

Example

Below, is a simple workflow showing how to use both the Predictor and the Learner output. We used the Housing
data set. For the Predictor, we input the prediction model into the Predictions widget and view the results in the Data
Table. For the Learner, we can compare different learners in the Test&Score widget.

Mean Learner

Learns the mean of its input data.

2.4. Regression 175

https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Elastic_net_regularization

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessed data.

Outputs:

• Learner

A mean learning algorithm.

• Predictor

A trained regressor. Signal Predictor sends the regressor only if signal Data is present.

Description

This is the simplest learner widget for regression problems. It learns the mean of the class variable and returns a
predictor with the same mean value. Due to its accuracy, this widget can serve as a baseline for other regression
models.

1. Learner/predictor name

2. Produce a report.

3. The Apply button commits changes to the output. Alternatively, tick the box on the left side of the button to
apply changes automatically.

Examples

In the first example, we use Mean Learner to construct a predictor and input it into the Data Table. We used the
housing data set. In the table, you can see an extra column Mean Learner with one (mean) value for all instances.

Another way to use Mean Learner is to compare it to other learners in the Test&Score widget.

176 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Mean

Orange Visual Programming Documentation, Release 3

2.4. Regression 177

Orange Visual Programming Documentation, Release 3

178 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Nearest Neighbors

Predicts according to the nearest training instances.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessed data

Outputs:

• Learner

A learning algorithm with supplied parameters

• Predictor

A trained regressor. Signal Predictor sends the output signal only if input Data is present.

Description

The Nearest Neighbors widget uses the kNN algorithm that searches for k closest training examples in feature space
and uses their average as prediction.

1. Learner/predictor name

2. Set the number of nearest neighbors and the distance parameter (metric) as regression criteria. Metric can be:

2.4. Regression 179

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Orange Visual Programming Documentation, Release 3

• Euclidean (“straight line”, distance between two points)

• Manhattan (sum of absolute differences of all attributes)

• Maximal (greatest of absolute differences between attributes)

• Mahalanobis (distance between point and distribution).

3. You can assign weight to the contributions of the neighbors. The Weights you can use are:

• Uniform: all points in each neighborhood are weighted equally.

• Distance: closer neighbors of a query point have a greater influence than the neighbors further away.

4. Produce a report.

5. Press Apply to commit changes.

Example

Below, is a workflow showing how to use both the Predictor and the Learner output. For the purpose of this example,
we used the Housing data set. For the Predictor, we input the prediction model into the Predictions widget and view
the results in the Data Table. For Learner, we can compare different learners in the Test&Score widget.

Stochastic Gradient Descent

180 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Chebyshev_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance

Orange Visual Programming Documentation, Release 3

Learns a linear classifier by minimizing a chosen loss function.

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessed data.

Outputs:

• Learner

A learning algorithm with supplied parameters

• Predictor

A trained regressor. Signal Predictor sends the output signal only if input Data is present.

Description

The Stochastic Gradient Descent widget uses stochastic gradient descent that minimizes a chosen loss function with
a linear function. The algorithm approximates a true gradient by considering one sample at a time, and simultaneously
updates the model based on the gradient of the loss function. This regression returns predictors as minimizers of the
sum, i.e. M-estimators, and is especially useful for large-scale and sparse data sets.

1. Learner/predictor name

2. Loss functions:

• Squared Loss (fitted to ordinary least-squares)

• Huber (switches to linear loss beyond 𝜖)

• Epsilon insensitive (ignores errors within 𝜖, linear beyond it)

• Squared epsilon insensitive (loss is squared beyond 𝜖-region).

3. Regularization norms to prevent overfitting:

• Absolute norm (L1, leading to sparse solutions)

• Euclidean norm (L2, standard regularizer)

• Elastic net (mixing both penalty norms).

4. Use the default Inverse scaling for the learning rate to be inversely related to the number of iterations or select
Constant for LR to stay the same through all epochs (passes).

5. Set the constants for the regression algorithm:

• Eta0: initial learning rate

• Power t: exponent for inverse scaling learning rate; t is time step 6, which relates to the number of passes
through the training data.

7. Produce a report.

8. Press Apply to commit changes. Alternatively, tick the box on the left side of the Apply button and changes will
be communicated automatically.

2.4. Regression 181

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Mean_squared_error#Regression
https://en.wikipedia.org/wiki/Huber_loss
http://kernelsvm.tripod.com/
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
https://en.wikipedia.org/wiki/Elastic_net_regularization
http://users.ics.aalto.fi/jhollmen/dippa/node22.html
https://en.wikipedia.org/wiki/Regression_analysis

Orange Visual Programming Documentation, Release 3

182 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Example

Below, we compare three different regression models to see which predict what kind of results. For the purpose of
this example, the Housing data set is used. We connect the File widget to Stochastic Gradient Descent, Linear
Regression and Nearest Neighbors widget and all four to the Predictions widget. Then we use the Data Table to see
what predictions each model makes.

SVM Regression

Learns a SVM regression of its input data.

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessed data.

2.4. Regression 183

Orange Visual Programming Documentation, Release 3

Outputs:

• Learner

A SVM learning algorithm with supplied parameters.

• Predictor

A trained regressor. Signal Predictor sends the regressor only if signal Data is present.

Description

SVM Regression performs linear regression in a high dimension feature space using an 𝜖-intensive loss. Its estimation
accuracy depends on a good setting of C, 𝜖 and kernel parameters. The widget outputs class predictions based on a
SVM learning algorithm.

1. Learner/predictor name

2. Train an 𝜖-SVR or v-SVR model and set test error bounds.

3. Set kernel, a function that transforms attribute space to a new feature space to fit the maximum-margin hyper-
plane, thus allowing the algorithm to create non-linear regressors. The first kernel in the list, however, is a
Linear kernel that does not require this trick, but all the others (Polynomial, RBF and Sigmoid) do. Functions
that specify the kernel are presented beside their names, and the constants involved are:

• g for the gamma constant in kernel function (the recommended value is 1/k, where k is the number of the
attributes, but since there may be no training set given to the widget the default is 0 and the user has to set
this option manually),

• c for the constant c0 in the kernel function (default 0), and

• d for the degree of the kernel (default 3).

4. Set permitted deviation from the expected value.

5. Produce a report.

6. Press Apply to commit changes. Alternatively, tick the box on the left side of the Apply button to communicate
changes automatically.

Example

Below, we use two regression models to compare predictions in the Predictions widget. We used the Housing data set.

Regression Tree

Regression Tree

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessed data.

184 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Support_vector_machine#Regression
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Polynomial_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/#sigmoid

Orange Visual Programming Documentation, Release 3

2.4. Regression 185

Orange Visual Programming Documentation, Release 3

186 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Outputs:

• Learner

A regression tree learning algorithm with settings as specified in the dialog.

• Predictor

Trained regressor.

Description

1. The learner can be given a name under which it will appear in other widgets. The default name is “Regression
Tree”.

2. In Feature selection, there is just one option, namely Mean Squared Error, which measures the average of the
squares of the errors or deviations (the difference between the estimator and what is estimated).

3. Pruning criteria:

• Minimal instances in leaves; if checked, the algorithm will never construct a split which would put less
than the specified number of training examples into any of the branches.

• Stop splitting nodes with less instances than forbids the algorithm to split the nodes with less than the
given number of instances.

• Limit the depth of the regression tree.

3. Produce a report.

2.4. Regression 187

https://en.wikipedia.org/wiki/Mean_squared_error

Orange Visual Programming Documentation, Release 3

4. After changing the settings, you need to click Apply, which will put the new learner in the output and, if the
training examples are given, construct a new regressor and output it as well.

Examples

There are two typical uses for this widget. First, you may want to induce a model and check what it looks like. You
do it with the workflow below. To learn more about it, see the documentation on Regression Tree Viewer.

The second schema checks the accuracy of the algorithm. The selected tree node is presented in the Scatter Plot and
we can see that the selected examples exhibit the same features.

Regression Tree Viewer

Visualization of a regression tree.

Signals

Inputs:

• Regression Tree

Regression tree

Outputs:

• Data

Data from a selected tree node

188 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.4. Regression 189

Orange Visual Programming Documentation, Release 3

Description

This is a versatile widget with 2-D visualization of a regression tree. The user can select a node, instructing the widget
to output the data associated with the node, thus enabling explorative data analysis.

1. Information on the input.

2. Set the zoom and define the tree width. The nodes display tooltips when hovering over them.

3. The edges between the nodes in the tree graph are drawn based on the selected edge width.

• All the edges will be of equal width if Fixed is chosen.

• When Relative to root is selected, the width of the edge will correspond to the proportion of instances in
the corresponding node with respect to all the instances in the training data. Under this selection, the edge
will get thinner and thinner when traversing toward the bottom of the tree.

• Relative to parent makes the edge width correspond to the proportion of instances in the nodes with respect
to the instances in their parent node.

4. The nodes box defines the target class, which you can change based on the classes in the data. You can also use
Set Colors and color the tree according to the number of instances in a node or impurity. You can also choose to
keep the default coloring.

5. Press Save Graph to save the regression tree graph as a file to your computer in a .svg or .png format.

6. Regression tree.

190 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Decision_tree_learning

Orange Visual Programming Documentation, Release 3

Examples

Below, is a simple schema, where we have read the data, constructed the regression tree and viewed it in our tree
viewer. We loaded the Housing data set and limited the depth of the tree to only 4 levels because of the vastness of the
data set. It is worth remembering that if both the viewer and Regression Tree are open, any run of the tree induction
algorithm will immediately affect the visualization. You can thus use this combination to explore how parameters of
the induction algorithm influence the structure of the resulting tree.

Clicking on any node will output the related data instances. This is explored in the Scatterplot. Make sure that the tree
data is passed as a data subset; this can be done by connecting the Scatterplot to the File widget first, and connecting
it to the Tree Viewer widget next.

Random Forest Regression

Random forest regression

Signals

Inputs:

• Data

Data set

• Preprocessor

Preprocessed data.

Outputs:

• Learner

2.4. Regression 191

Orange Visual Programming Documentation, Release 3

192 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Random forest learning algorithm with settings as specified in the dialog.

• Predictor

Trained regressor.

Description

Random forest is an ensemble learning method used for classification, regression and other tasks. It was first proposed
by Tin Kam Ho and further developed by Leo Breiman and Adele Cutler. When given a data set, Random Forest
builds a set of regression trees. Each tree is developed from a bootstrap sample from the training data. When develop-
ing individual trees, an arbitrary subset of attributes is drawn (hence the term “Random”) from which the best attribute
for the split is selected.

1. Specify the name of the learner or predictor. The default name is Random Forest Regression.

2. Specify how many regression trees will be included in the forest (Number of trees in the forest), and how many
attributes will be arbitrarily drawn for consideration at each node. If the latter is not specified (option Number
of attributes... left unchecked), this number is equal to the square root of the number of attributes in the data.
You can also choose to control the random number generator (Fixed seed for random generator).

3. Original Brieman’s proposal is to grow the trees without any pre-prunning, but since pre-pruning often works
quite well and is faster, the user can set the depth to which the trees will be grown (Limit depth of individual
trees). Another pre-pruning option is stop splitting nodes when the maximal depth is reached (Do not split
subsets smaller than).

2.4. Regression 193

https://en.wikipedia.org/wiki/Random_forest

Orange Visual Programming Documentation, Release 3

4. Produce a report.

5. Click Apply to communicate the changes to other widgets. Alternatively, tick Apply Automatically and changes
will be communicated automatically.

Example

The example below compares different learnes, namely Random Forest Regression, Linear Regression and Mean
Learner, in the Test&Score widget.

In order to demonstrate how to use the Predictor output, we used the Housing data set and connected the Random
Forest Regression widget with the Predictions widget. The results are displayed in the appended data table.

Unsupervised

PCA

PCA linear transformation of input data.

Signals

Inputs:

194 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 195

Orange Visual Programming Documentation, Release 3

• Data

A data set.

Outputs:

• Transformed Data

PCA transformed input data.

• Components

Eigenvectors.

Description

Principal Component Analysis (PCA) computes the PCA linear transformation of the input data. It outputs either a
transformed data set with weights of individual instances or weights of principal components.

1. Select how many principal components you wish in your output. It is best to choose as few as possible with
variance covered as high as possible. You can also set how much variance you wish to cover with your principal
components.

2. You can normalize data to adjust the values to common scale.

3. When Apply Automatically is ticked, the widget will automatically communicate all changes. Alternatively,
click Apply.

4. Press Save Image if you want to save the created image to your computer.

5. Produce a report.

196 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Principal_component_analysis

Orange Visual Programming Documentation, Release 3

6. Principal components graph, where the red (lower) line is the variance covered per component and the green
(upper) line is cumulative variance covered by components.

The number of components of the transformation can be selected either in the Components Selection input box or by
dragging the vertical cutoff line in the graph.

Examples

PCA can be used to simplify visualizations of large data sets. Below, we used the Iris data set to show how we can
improve the visualization of the data set with PCA. The transformed data in the Scatter Plot show a much clearer
distinction between classes than the default settings.

The widget provides two outputs: transformed data and principal components. Transformed data are weights for
individual instances in the new coordinate system, while components are the system descriptors (weights for princial
components). When fed into the Data Table, we can see both outputs in numerical form. We used two data tables in
order to provide a more clean visualization of the workflow, but you can also choose to edit the links in such a way
that you display the data in just one data table. You only need to create two links and connect the Transformed data
and Components inputs to the Data output.

Correspondence Analysis

2.5. Unsupervised 197

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

A data set.

Outputs:

• None

Description

Correspondence Analysis (CA) computes the CA linear transformation of the input data. While it is similar to PCA,
CA computes linear transformation on discrete rather than on continuous data.

1. Select the variables you want to see plotted.

2. Select the component for each axis.

3. Inertia values (percentage of independence from transformation, i.e. variables are in the same dimension).

4. Produce a report.

Example

Below, is a simple comparison between the Correspondence Analysis and Scatter plot widgets on the Titanic data
set. While the Scatter plot shows fairly well which class and sex had a good survival rate and which one didn’t,

198 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Correspondence_analysis
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 199

Orange Visual Programming Documentation, Release 3

Correspondence Analysis can plot several variables in a 2-D graph, thus making it easy to see the relations between
variable values. It is clear from the graph that “no”, “male” and “crew” are related to each other. The same goes for
“yes”, “female” and “first”.

Distance Map

Visualizes distances between items.

Signals

Inputs:

• Distances

A distance matrix.

Outputs:

200 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Data

Instances corresponding to the selected elements of the matrix.

• Features

Attributes corresponding to the selected elements of the matrix.

Description

The Distance Map visualizes distances between objects. The visualization is the same as if we printed out a table of
numbers, except that the numbers are replaced by colored spots.

Distances are most often those between instances (“rows” in the Distances widget) or attributes (“columns” in Dis-
tances widget). The only suitable input for Distance Map is the Distances widget. For the output, the user can select
a region of the map and the widget will output the corresponding instances or attributes. Also note that the Distances
widget ignores discrete values and calculates distances only for continuous data, thus it can only display distance map
for discrete data if you Continuize them first.

The snapshot shows distances between columns in the heart disease data, where smaller distances are represented with
light and larger with dark orange. The matrix is symmetric and the diagonal is a light shade of orange - no attribute is
different from itself. Symmetricity is always assumed, while the diagonal may also be non-zero.

1. Element sorting arranges elements in the map by

2.5. Unsupervised 201

Orange Visual Programming Documentation, Release 3

• None (lists instances as found in the data set)

• Clustering (clusters data by similarity)

• Clustering with ordered leaves (maximizes the sum of similarities of adjacent elements)

2. Colors

• Colors (select the color palette for your distance map)

• Low and High are thresholds for the color palette (low for instances or attributes with low distances and
high for instances or attributes with high distances).

3. Select Annotations.

4. If Send Selected Automatically is on, the data subset is communicated automatically, otherwise you need to press
Send Selected.

5. Press Save Image if you want to save the created image to your computer.

6. Produce a report.

Normally, a color palette is used to visualize the entire range of distances appearing in the matrix. This can be changed
by setting the low and high threshold. In this way we ignore the differences in distances outside this interval and
visualize the interesting part of the distribution.

Below, we visualized the most correlated attributes (distances by columns) in the heart disease data set by setting the
color threshold for high distances to the minimum. We get a predominantly black square, where attributes with the
lowest distance scores are represented by a lighter shade of the selected color schema (in our case: orange). Beside
the diagonal line, we see that in our example ST by exercise and major vessels colored are the two attributes closest
together.

The user can select a region in the map with the usual click-and-drag of the cursor. When a part of the map is selected,
the widget outputs all items from the selected cells.

Examples

The first workflow shows a very standard use of the Distance Map widget. We select 70% of the original Iris data as
our sample and view the distances between rows in Distance Map.

In the second example, we use the heart disease data again and select a subset of women only from the Scatter Plot.
Then, we visualize distances between columns in the Distance Map. Since the subset also contains some discrete data,
the Distances widget warns us it will ignore the discrete features, thus we will see only continuous instances/attributes
in the map.

Distances

Computes distances between rows/columns in a data set.

Signals

Inputs:

• Data

A data set

Outputs:

202 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 203

Orange Visual Programming Documentation, Release 3

204 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 205

Orange Visual Programming Documentation, Release 3

• Distances

A distance matrix

Description

The Distances widget computes distances between rows or columns in a data set.

1. Choose whether to measure distances between rows or columns.

2. Choose the Distance Metric:

• Euclidean (“straight line”, distance between two points)

• Manhattan (the sum of absolute differences for all attributes)

• Cosine (the cosine of the angle between two vectors of an inner product space)

• Jaccard (the size of the intersection divided by the size of the union of the sample sets)

• Spearman (linear correlation between the rank of the values, remapped as a distance in a [0, 1] interval)

• Spearman absolute (linear correlation between the rank of the absolute values, remapped as a distance in a
[0, 1] interval)

• Pearson (linear correlation between the values, remapped as a distance in a [0, 1] interval)

• Pearson absolute (linear correlation between the absolute values, remapped as a distance in a [0, 1] interval)

In case of missing values, the widget automatically imputes the average value of the row or the column.

Since the widget cannot compute distances between discrete and continuous attributes, it only uses continu-
ous attributes and ignores the discrete ones. If you want to use discrete attributes, continuize them with the
Continuize widget first.

3. Produce a report.

206 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wiktionary.org/wiki/Manhattan_distance
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Orange Visual Programming Documentation, Release 3

4. Tick Apply Automatically to automatically commit changes to other widgets. Alternatively, press ‘Apply‘.

Example

This widget needs to be connected to another widget to display results, for instance to Distance Map to visualize
distances, Hierarchical Clustering to cluster the attributes, or MDS to visualize the distances in a plane.

Distance Matrix

Visualizes distance measures in a distance matrix.

Signals

Inputs:

• Distances

A distance matrix.

Outputs:

2.5. Unsupervised 207

Orange Visual Programming Documentation, Release 3

• Distances

A distance matrix.

• Table

Distance measures in a distance matrix.

Description

The Distance Matrix widget creates a distance matrix, which is a two-dimensional array containing the distances,
taken pairwise, between the elements of a set. The number of elements in the data set defines the size of the matrix.
Data matrices are essential for hierarchical clustering and they are extremely useful in bioinformatics as well, where
they are used to represent protein structures in a coordinate-independent manner.

1. Elements in the data set and the distances between them

2. Label the table. The options are: none, enumeration, according to variables.

3. Produce a report.

4. Click Send to communicate changes to other widgets. Alternatively, tick the box in front of the Send button and
changes will be communicated automatically (Send Automatically).

The only two suitable inputs for Distance Matrix are the Distances widget and the Distance Transformation widget.
The output of the widget is a data table containing the distance matrix. The user can decide how to label the table and
the distance matrix (or instances in the distance matrix) can then be visualized or displayed in a separate data table.

Example

The example below displays a very standard use of the Distance Matrix widget. We compute the distances between
rows in the sample from the Iris data set and output them in the Distance Matrix. It comes as no surprise that Iris
Virginica and Iris Setosa are the furthest apart.

208 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Distance Transformation

Transforms distances in a data set.

Signals

Inputs:

• Distances

A distance matrix

Outputs:

• Distances

A distance matrix

Description

The Distances Transformation widget is used for the normalization and inversion of distance matrices. The normal-
ization of data is necessary to bring all the variables into proportion with one another.

2.5. Unsupervised 209

Orange Visual Programming Documentation, Release 3

210 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

1. Choose the type of Normalization:

• No normalization

• To interval [0, 1]

• To interval [-1, 1]

• Sigmoid function: 1/(1+exp(-X))

2. Choose the type of Inversion:

• No inversion

• -X

• 1 - X

• max(X) - X

• 1/X

3. Produce a report.

4. After changing the settings, you need to click Apply to commit changes to other widgets. Alternatively, tick
Apply automatically.

Example

In the snapshot below, you can see how transformation affects the distance matrix. We loaded the Iris data set and
calculated the distances between rows with the help of the Distances widget. In order to demonstrate how Distance
Transformation affects the Distance Matrix, we created the worflow below and compared the transformed distance
matrix with the “original” one.

Distance File

Loads an existing distance file.

Signals

Inputs:

• None

Outputs:

• Distance File

A distance matrix.

Description

1. Choose from a list of previously saved distance files.

2. Browse for saved distance files.

3. Reload the selected distance file.

4. Information about the distance file (number of points, labelled/unlabelled)

5. Browse documentation data sets.

2.5. Unsupervised 211

https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Sigmoid_function

Orange Visual Programming Documentation, Release 3

212 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

6. Produce a report.

Example

When you want to use a custom-set distance file that you’ve saved before, open the Distance File widget and select
the desired file with the Browse icon. This widget loads the existing distance file. In the snapshot below, we loaded the
transformed Iris distance matrix from the Save Distance Matrix example. We displayed the transformed data matrix
in the Distance Map widget. We also decided to display a distance map of the original Iris data set for comparison.

Save Distance Matrix

Saves a distance matrix.

Signals

Inputs:

• Distances

2.5. Unsupervised 213

Orange Visual Programming Documentation, Release 3

A distance matrix.

Outputs:

• None

Description

1. By clicking Save, you choose from previously saved distance matrices. Alternatively, tick the box on the left
side of the Save button and changes will be communicated automatically.

2. By clicking Save as, you save the distance matrix to your computer, you only need to enter the name of the file
and click Save. The distance matrix will be saved as type .dst.

Example

In the snapshot below, we used the Distance Transformation widget to transform the distances in the Iris data set. We
then chose to save the transformed version to our computer, so we could use it later on. We decided to output all data
instances. You can choose to output just a minor subset of the data matrix. Pairs are marked automatically. If you wish
to know what happened to our changed file, go here

Hierarchical Clustering

Groups items using a hierarchical clustering algorithm.

Signals

Inputs:

• Distances

A distance matrix

Outputs:

• Selected Data

A data subset

• Other Data

Remaining data

214 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 215

Orange Visual Programming Documentation, Release 3

Description

The widget computes hierarchical clustering of arbitrary types of objects from a matrix of distances and shows a
corresponding dendrogram.

1. The widget supports four ways of measuring distances between clusters:

• Single linkage computes the distance between the closest elements of the two clusters

• Average linkage computes the average distance between elements of the two clusters

• Weighted linkage uses the WPGMA method

• Complete linkage computes the distance between the clusters’ most distant elements

2. Labels of nodes in the dendrogram can be chosen in the Annotation box.

3. Huge dendrograms can be pruned in the Pruning box by selecting the maximum depth of the dendrogram. This
only affects the display, not the actual clustering.

4. The widget offers three different selection methods:

• Manual (Clicking inside the dendrogram will select a cluster. Multiple clusters can be selected by holding
Ctrl/Cmd. Each selected cluster is shown in a different color and is treated as a separate cluster in the
output.)

• Height ratio (Clicking on the bottom or top ruler of the dendrogram places a cutoff line in the graph.
Items to the right of the line are selected.)

• Top N (Selects the number of top nodes.)

216 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Dendrogram
http://research.amnh.org/~siddall/methods/day1.html

Orange Visual Programming Documentation, Release 3

5. Use Zoom and scroll to zoom in or out.

6. If the items being clustered are instances, they can be added a cluster index (Append cluster IDs). The ID can
appear as an ordinary Attribute, Class attribute or a Meta attribute. In the second case, if the data already
has a class attribute, the original class is placed among meta attributes.

7. The data can be automatically output on any change (Auto send is on) or, if the box isn’t ticked, by pushing Send
Data.

8. Clicking this button produces an image that can be saved.

9. Produce a report.

Examples

The workflow below shows the output of Hierarchical Clustering for the Iris data set in Data Table widget. We see
that if we choose Append cluster IDs in hierarchical clustering, we can see an additional column in the Data Table
named Cluster. This is a way to check how hierarchical clustering clustered individual instances.

In the second example, we loaded the Iris data set again, but this time we added the Scatter Plot, showing all the
instances from the File widget, while at the same time receiving the selected instances signal from Hierarchical
Clustering. This way we can observe the position of the selected cluster(s) in the projection.

k-Means

Groups items using the k-Means clustering algorithm.

2.5. Unsupervised 217

Orange Visual Programming Documentation, Release 3

218 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Data

A data set.

Outputs:

• Data

A data set with cluster index as a class attribute.

Description

The widget applies the k-Means clustering algorithm to the data and outputs a new data set in which the cluster index
is used as a class attribute. The original class attribute, if it exists, is moved to meta attributes. Scores of clustering
results for various k are also shown in the widget.

1. Select the number of clusters.

• Fixed: algorithm clusters data in a specified number of clusters.

• Optimized: widget shows clustering scores for the selected cluster range.

• Silhouette (contrasts average distance to elements in the same cluster with the average distance to elements
in other clusters)

• Inter-cluster distance (measures distances between clusters, normally between centroids)

2.5. Unsupervised 219

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Silhouette_(clustering)

Orange Visual Programming Documentation, Release 3

• Distance to centroids (measures distances to the arithmetic means of clusters)

2. Select the initialization method (the way the algorithm begins clustering):

• k-Means++ (first center is selected randomly, subsequent are chosen from the remaining points with prob-
ability proportioned to squared distance from the closest center)

• Random initialization (clusters are assigned randomly at first and then updated with further iterations)

Re-runs (how many times the algorithm is run) and maximal iterations (the maximum number of iteration
within each algorithm run) can be set manually.

3. The widget outputs a new data set with appended cluster information. Select how to append cluster information
(as class, feature or meta attribute) and name the column.

4. If Apply Automatically is ticked, the widget will commit changes automatically. Alternatively, click Apply.

5. Produce a report.

6. Check scores of clustering results for various k.

Examples

We are going to explore the widget with the following schema.

First, we load the Iris data set, divide it into three clusters and show it in the Data Table, where we can observe which
instance went into which cluster. The interesting parts are the Scatter Plot and Select Rows.

Since k-Means added the cluster index as a class attribute, the scatter plot will color the points according to the clusters
they are in.

What we are really interested in is how well the clusters induced by the (unsupervised) clustering algorithm match the
actual classes in the data. We thus take Select Rows widget, in which we can select individual classes and have the

220 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/K-means%2B%2B

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 221

Orange Visual Programming Documentation, Release 3

corresponding points marked in the scatter plot. The match is perfect for setosa, and pretty good for the other two
classes.

You may have noticed that we left the Remove unused values/attributes and Remove unused classes in Select Rows
unchecked. This is important: if the widget modifies the attributes, it outputs a list of modified instances and the scatter
plot cannot compare them to the original data.

Perhaps a simpler way to test the match between clusters and the original classes is to use the Distributions widget.

The only (minor) problem here is that this widget only visualizes normal (and not meta) attributes. We solve this by
using Select Columns: we reinstate the original class Iris as the class and put the cluster index among the attributes.

The match is perfect for setosa: all instances of setosa are in the third cluster (blue). 48 versicolors are in the second
cluster (red), while two ended up in the first. For virginicae, 36 are in the first cluster and 14 in the second.

MDS

Multidimensional scaling (MDS) projects items onto a plane fitted to given distances between points.

222 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 223

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Distances

A distance matrix

• Data

A data set

Outputs:

• Data

A data set with MDS coordinates.

• Data subset

Selected data

Description

Multidimensional scaling is a technique which finds a low-dimensional (in our case a two-dimensional) projection of
points, where it tries to fit distances between points as well as possible. The perfect fit is typically impossible to obtain
since the data is high-dimensional or the distances are not Euclidean.

In the input, the widget needs either a data set or a matrix of distances. When visualizing distances between rows, you
can also adjust the color of the points, change their shape, mark them, and output them upon selection.

The algorithm iteratively moves the points around in a kind of a simulation of a physical model: if two points are
too close to each other (or too far away), there is a force pushing them apart (or together). The change of the point’s
position at each time interval corresponds to the sum of forces acting on it.

1. The widget redraws the projection during optimization. Optimization is run automatically in the beginning and
later by pushing Start.

• Max iterations: The optimization stops either when the projection changes only minimally at the last
iteration or when a maximum number of iterations has been reached.

• Initialization: PCA (Torgerson) positions the initial points along principal coordinate axes. Random sets
the initial points to a random position and then readjusts them.

• Refresh: Set how often you want to refresh the visualization. It can be at Every iteration, Every 5/10/25/50
steps or never (None). Setting a lower refresh interval makes the animation more visually appealing, but
can be slow if the number of points is high.

2. Defines how the points are visualized. These options are available only when visalizing distances between rows
(selected in the Distances widget).

• Color: Color of points by attribute (gray for continuous, colored for discrete).

• Shape: Shape of points by attribute (only for discrete).

• Size: Set the size of points (Same size or select an attribute) or let the size depend on the value of the
continuous attribute the point represents (Stress).

• Label: Discrete attributes can serve as a label.

• Symbol size: Adjust the size of the dots.

• Symbol opacity: Adjust the transparency level of the dots.

• Show similar pairs: Adjust the strength of network lines.

224 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Multidimensional_scaling
https://en.wikipedia.org/wiki/Euclidean_distance

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 225

Orange Visual Programming Documentation, Release 3

• Jitter: Set jittering to prevent the dots from overlapping.

3. Adjust the graph with Zoom/Select. The arrow enables you to select data instances. The magnifying glass
enables zooming, which can be also done by scrolling in and out. The hand allows you to move the graph
around. The rectangle readjusts the graph proportionally.

4. Select the desired output:

• Original features only (input data set)

• Coordinates only (MDS coordinates)

• Coordinates as features (input data set + MDS coordinates as regular attributes)

• Coordinates as meta attributes (input data set + MDS coordinates as meta attributes)

5. Sending the instances can be automatic if Send selected automatically is ticked. Alternatively, click Send se-
lected.

6. Save Image allows you to save the created image either as .svg or .png file to your device.

7. Produce a report.

The MDS graph performs many of the functions of the Visualizations widget. It is in many respects similar to the
Scatter Plot widget, so we recommend reading that widget’s description as well.

Example

The above graphs were drawn using the following simple schema. We used the iris.tab data set. Using the Distances
widget we input the distance matrix into the MDS widget, where we see the Iris data displayed in a 2-dimensional
plane. We can see the appended coordinates in the Data Table widget.

References

Wickelmaier, F. (2003). An Introduction to MDS. Sound Quality Research Unit, Aalborg University. Available here.

Manifold Learning

Nonlinear dimensionality reduction.

Signals

Inputs:

• Data

A data set

Outputs:

• Transformed Data

A data set with new, reduced coordinates.

226 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Jitter
https://homepages.uni-tuebingen.de/florian.wickelmaier/pubs/Wickelmaier2003SQRU.pdf

Orange Visual Programming Documentation, Release 3

2.5. Unsupervised 227

Orange Visual Programming Documentation, Release 3

Description

Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget
then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with
Scatter Plot or other visualization widgets.

1. Method for manifold learning: - t-SNE - MDS, see also MDS widget - Isomap - Locally Linear Embedding -
Spectral Embedding

2. Set parameters for the method: - t-SNE (distance measures):

• Euclidean distance

• Manhattan

• Chebyshev

• Jaccard

• Mahalanobis

• Cosine

• MDS (iterations and initialization):

– max interations: maximum number of optimization interations

– initialization: method for initialization of the algorithm (PCA or random)

• Isomap:

– number of neighbors

• Locally Linear Embedding:

– method:

228 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
http://scikit-learn.org/stable/modules/manifold.html#t-distributed-stochastic-neighbor-embedding-t-sne
http://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds
http://scikit-learn.org/stable/modules/manifold.html#isomap
http://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding
http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding

Orange Visual Programming Documentation, Release 3

* standard

* modified

* hessian eigenmap

* local

– number of neighbors

– max iterations

• Spectral Embedding:

– affinity:

* nearest neighbors

* RFB kernel

3. Output: the number of reduced features (components).

4. If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.

5. Produce a report.

Manifold Learning widget produces different embeddings for high-dimensional data.

... figure:: images/collage-manifold.png

From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.

Example

Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it
great for visualizing data sets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph.
Then we used Scatter Plot to plot the embeddings.

Evaluation

Calibration Plot

Shows the match between classifiers’ probability predictions and actual class probabilities.

Signals

Inputs:

• Evaluation Results

Results of testing classification algorithms.

Outputs:

• None

2.6. Evaluation 229

http://scikit-learn.org/stable/modules/manifold.html#hessian-eigenmapping

Orange Visual Programming Documentation, Release 3

230 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.6. Evaluation 231

Orange Visual Programming Documentation, Release 3

Description

The Calibration Plot plots class probabilities against those predicted by the classifier(s).

1. Select the desired target class from the drop down menu.

2. Choose which classifiers to plot. The diagonal represents optimal behaviour; the closer the classifier’s curve
gets, the more accurate its prediction probabilities are. Thus we would use this widget to see whether a classifier
is overly optimistic (gives predominantly positive results) or pesimitistic (gives predominantly negative results).

3. If Show rug is enabled, ticks are displayed at the bottom and the top of the graph, which represent negative and
positive examples respectively. Their position corresponds to the classifier’s probability prediction and the color
shows the classifier. At the bottom of the graph, the points to the left are those which are (correctly) assigned a
low probability of the target class, and those to the right are incorrectly assigned high probabilities. At the top
of the graph, the instances to the right are correctly assigned high probabilities and vice versa.

4. Press Save Image if you want to save the created image to your computer in a .svg or .png format.

5. Produce a report.

Example

At the moment, the only widget which gives the right type of signal needed by the Calibration Plot is Test&Score.
The Calibration Plot will hence always follow Test&Score and, since it has no outputs, no other widgets follow it.

Here is a typical example, where we compare three classifiers (namely Naive Bayes, Classification Tree and Major-
ity) and input them into Test&Score. We used the Titanic data set. Test&Score then displays evaluation results for
each classifier. Then we draw Calibration Plot and ROC Analysis widgets from Test&Score to further analyze the
performance of classifiers. Calibration Plot enables you to see prediction accuracy of class probabilities in a plot.

232 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Calibration_curve

Orange Visual Programming Documentation, Release 3

Confusion Matrix

Shows proportions between the predicted and actual class.

Signals

Inputs:

• Evaluation results

Results of testing the algorithms; typically from Test Learners

Outputs:

• Selected Data

A data subset from the selected cells in the confusion matrix.

Description

The Confusion Matrix gives the number/proportion of instances between the predicted and actual class. The selection
of the elements in the matrix feeds the corresponding instances into the output signal. This way, one can observe
which specific instances were misclassified and how.

The widget usually gets the evaluation results from Test Learners; an example of the schema is shown below.

1. When evaluation results contain data on multiple learning algorithms, we have to choose one in the Learners
box.

The snapshot shows the confusion matrix for Classification Tree and Naive Bayesian classifier trained and tested on
the Iris data. The righthand side of the widget contains the matrix for the naive Bayesian classifier (since this classifier
is selected on the left). Each row corresponds to a correct class, while columns represent the predicted classes. For
instance, four instances of Iris-versicolor were misclassified as Iris-virginica. The rightmost column gives the number
of instances from each class (there are 50 irises of each of the three classes) and the bottom row gives the number of
instances classified into each class (e.g., 48 instances were classified into virginica).

2. In Show, we select what data we would like to see in the matrix.

• Number of instances shows correctly and incorrectly classified instances numerically.

• Proportions of predicted shows how many instances classified as, say, Iris-versicolor are in which true
class; in the table we can read the 0% of them are actually setosae, 88.5% of those classified as versicolor
are versicolors, and 7.7% are virginicae.

• Proportions of actual shows the opposite relation: of all true versicolors, 92% were classified as versicol-
ors and 8% as virginicae.

3. In Select, you can choose the desired output.

• Correct sends all correctly classified instances to the output by selecting the diagonal of the matrix.

• Misclassified selects the misclassified instances.

• None annuls the selection.

As mentioned before, one can also select individual cells of the table to select specific kinds of misclassified
instances (e.g. the versicolors classified as virginicae).

2.6. Evaluation 233

https://en.wikipedia.org/wiki/Confusion_matrix

Orange Visual Programming Documentation, Release 3

234 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

4. When sending selected instances, the widget can add new attributes, such as predicted classes or their probabil-
ities, if the corresponding options Predictions and/or Probabilities are checked.

5. The widget outputs every change if Send Automatically is ticked. If not, the user will need to click Send Selected
to commit the changes.

6. Produce a report.

Example

The following schema demonstrates well what this widget can be used for.

Test&Score gets the data from File and two learning algorithms from Naive Bayes and Classification Tree. It performs
cross-validation or some other train-and-test procedures to get class predictions by both algorithms for all (or some)

2.6. Evaluation 235

Orange Visual Programming Documentation, Release 3

data instances. The test results are fed into the Confusion Matrix, where we can observe how many instances were
misclassified and in which way.

In the output, we used Data Table to show the instances we selected in the confusion matrix. If we, for instance, click
Misclassified, the table will contain all instances which were misclassified by the selected method.

The Scatterplot gets two sets of data. From the File widget it gets the complete data, while the confusion matrix
sends only the selected data, misclassifications for instance. The scatter plot will show all the data, with bold symbols
representing the selected data.

Lift Curve

Measures the performance of a chosen classifier against a random classifier.

Signals

Inputs:

• Evaluation Results

Results of classifiers’ tests on data.

Outputs:

236 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• None

Description

The Lift curve shows the relation between the number of instances which were predicted positive and those that are
indeed positive and thus measures the performance of a chosen classifier against a random classifier. The graph is
constructed with the cumulative number of cases (in descending order of probability) on the x-axis and the cumulative
number of true positives on the y-axis. Lift curve is often used in segmenting the population, e.g., plotting the number
of responding customers against the number of all customers contacted. You can also determine the optimal classifier
and its threshold from the graph.

1. Choose the desired Target class. The default class is chosen alphabetically.

2. If test results contain more than one classifier, the user can choose which curves she or he wants to see plotted.
Click on a classifier to select or deselect the curve.

3. Show lift convex hull plots a convex hull over lift curves for all classifiers (yellow curve). The curve shows the
optimal classifier (or combination thereof) for each desired TP/P rate.

4. Press Save Image if you want to save the created image to your computer in a .svg or .png format.

5. Produce a report.

6. 2-D pane with P rate (population) as x-axis and TP rate (true positives) as a y-axis. The diagonal line represents
the behaviour of a random classifier. Click and drag to move the pane and scroll in or out to zoom. Click on the
“A” sign at the bottom left corner to realign the pane.

Note: The perfect classifier would have a steep slope towards 1 until all classes are guessed correctly and then run

2.6. Evaluation 237

Orange Visual Programming Documentation, Release 3

straight along 1 on y-axis to (1,1).

Example

At the moment, the only widget which gives the right type of the signal needed by the Lift Curve is Test&Score.

In the example below, we try to see the prediction quality for the class ‘survived’ on the Titanic data set. We compared
three different classifiers in the Test Learners widget and sent them to Lift Curve to see their performance against
a random model. We see the Classification Tree classifier is the best out of the three, since it best aligns with lift
convex hull. We also see that its performance is the best for the first 30% of the population (in order of descending
probability), which we can set as the threshold for optimal classification.

References

Handouts of the University of Notre Dame on Data Mining - Lift Curve. Available here.

238 Chapter 2. Widgets

https://www3.nd.edu/~busiforc/handouts/DataMining/Lift%20Charts.html

Orange Visual Programming Documentation, Release 3

Predictions

Shows classifiers’ predictions on the data.

Signals

Inputs

• Data

A data set.

• Predictors

Predictors to be used on the data.

Outputs

• Predictions

Original data with added predictions.

Description

The widget receives a data set and one or more predictors (classifiers, not learning algorithms - see the example below).
It outputs the data and the predictions.

1. Information on the input

2.6. Evaluation 239

Orange Visual Programming Documentation, Release 3

2. The user can select the options for classification. If Show predicted class is ticked, the appended data table pro-
vides information on predicted class. If Show predicted probabilities is ticked, the appended data table provides
information on probabilities predicted by the classifiers. The user can also select the predicted class he or she
wants displayed in the appended data table. The option Draw distribution bars provides a nice visualization of
the predictions.

3. By ticking the Show full data set, the user can append the entire data table to the Predictions widget.

4. Select the desired output.

5. The appended data table

6. Produce a report.

Despite its simplicity, the widget allows for quite an interesting analysis of decisions of predictive models; there is a
simple demonstration at the bottom of the page. Confusion Matrix is a related widget and although many things can
be done with any of them, there are tasks for which one of them might be much more convenient than the other. The
output of the widget is another data set, where predictions are appended as new meta attributes. You can select which
features you wish to output (original data, predictions, probabilities). The resulting data set can be appended to the
widget, but you can still choose to display it in a separate data table.

Example

We randomly split the data into two subsets. The larger subset, containing 70 % of data instances, is sent to Naive Bayes
and Classification Tree, so they can produce the corresponding classifiers. Classifiers are then sent into Predictions,
among with the remaining 30 % of the data. Predictions shows how these examples are classified.

To save the predictions, we simply attach the Save widget to Predictions. The final file is a data table and can be saved
as in a .tab or .tsv format.

240 Chapter 2. Widgets

https://en.wikipedia.org/wiki/Predictive_modelling

Orange Visual Programming Documentation, Release 3

Finally, we can analyze the classifiers’ predictions. For that, we first take Select Columns with which we move the
meta attributes with probability predictions to features. The transformed data is then given to the Scatterplot, which
we set to use the attributes with probabilities as the x and y axes, while the class is (already by default) used to color
the data points.

To get the above plot, we selected Jitter continuous values, since the classification tree gives just a few distinct
probabilities. The blue points in the bottom left corner represent the people with no diameter narrowing, which were
correctly classified by both classifiers. The upper right red points represent the patients with narrowed vessels, which
were correctly classified by both.

Note that this analysis is done on a rather small sample, so these conclusions may be ungrounded. Here is the entire
workflow:

Another example of using this widget is given in the documentation for the widget Confusion Matrix.

ROC Analysis

Plots a true positive rate against a false positive rate of a test.

2.6. Evaluation 241

Orange Visual Programming Documentation, Release 3

242 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs:

• Evaluation Results

Results of classifiers’ tests on data

Outputs:

• None

Description

The widget shows ROC curves for the tested models and the corresponding convex hull. It serves as a mean of
comparison between classification models. The curve plots a false positive rate on an x-axis (1-specificity; probability
that target=1 when true value=0) against a true positive rate on a y-axis (sensitivity; probability that target=1 when
true value=1). The closer the curve follows the left-hand border and then the top border of the ROC space, the more
accurate the classifier. Given the costs of false positives and false negatives, the widget can also determine the optimal
classifier and threshold.

1. Choose the desired Target Class. The default class is chosen alphabetically.

2.6. Evaluation 243

Orange Visual Programming Documentation, Release 3

2. If test results contain more than one classifier, the user can choose which curves she or he wants to see plotted.
Click on a classifier to select or deselect it.

3. When the data comes from multiple iterations of training and testing, such as k-fold cross validation, the results
can be (and usually are) averaged.

The averaging options are:

• Merge predictions from folds (top left), which treats all the test data as if they came from a single iteration

• Mean TP rate (top right) averages the curves vertically, showing the corresponding confidence intervals

• Mean TP and FP at threshold (bottom left) traverses over threshold, averages the positions of curves and
shows horizontal and vertical confidence intervals

244 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

• Show individual curves (bottom right) does not average but prints all the curves instead

4. Option Show convex ROC curves refers to convex curves over each individual classifier (the thin lines positioned
over curves). Show ROC convex hull plots a convex hull combining all classifiers (the gray area below the
curves). Plotting both types of convex curves makes sense since selecting a threshold in a concave part of the
curve cannot yield optimal results, disregarding the cost matrix. Besides, it is possible to reach any point on the
convex curve by combining the classifiers represented by the points on the border of the concave region.

The diagonal dotted line represents the behaviour of a random classifier. The full diagonal line represents iso-
performance. A black “A” symbol at the bottom of the graph proportionally readjusts the graph.

5. The final box is dedicated to the analysis of the curve. The user can specify the cost of false positives (FP) and
false negatives (FN), and the prior target class probability.

Default threshold (0.5) point shows the point on the ROC curve achieved by the classifier if it predicts the target
class if its probability equals or exceeds 0.5.

Show performance line shows iso-performance in the ROC space so that all the points on the line give the same
profit/loss. The line further to the upper left is better than the one down and right. The direction of the line
depends upon costs and probabilities. This gives a recipe for depicting the optimal threshold for the given costs:
this is the point where the tangent with the given inclination touches the curve and it is marked in the plot. If we
push the iso-performance higher or more to the left, the points on the iso-performance line cannot be reached by
the learner. Going down or to the right, decreases the performance.

2.6. Evaluation 245

Orange Visual Programming Documentation, Release 3

The widget allows setting the costs from 1 to 1000. Units are not important, as are not the magnitudes. What
matters is the relation between the two costs, so setting them to 100 and 200 will give the same result as 400
and 800.

Defaults: both costs equal (500), Prior target class probability 50% (from the data).

False positive cost: 830, False negative cost 650, Prior target class probability 73%.

6. Press Save Image if you want to save the created image to your computer in a .svg or .png format.

7. Produce a report.

Example

At the moment, the only widget which gives the right type of signal needed by the ROC Analysis is Test&Score.
Below, we compare two classifiers, namely Classification Tree and Naive Bayes, in Test&Score and then compare
their performance in ROC Analysis, Life Curve and Calibration Plot.

Test & Score

Tests learning algorithms on data.

246 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.6. Evaluation 247

Orange Visual Programming Documentation, Release 3

248 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

Signals

Inputs

• Data

Data for training and, if there is no separate test data set, also testing.

• Test Data

Separate data for testing.

• Learner

One or more learning algorithms.

Outputs

• Evaluation results

Results of testing the algorithms.

Description

The widget tests learning algorithms. Different sampling schemes are available, including using separate test data. The
widget does two things. First, it shows a table with different classifier performance measures, such as classification
accuracy and area under ROC. Second, it outputs evaluation results, which can be used by other widgets for analyzing
the performance of classifiers, such as ROC Analysis or Confusion Matrix.

The Learner signal has an uncommon property: it can be connected to more than one widget to test multiple learners
with the same procedures.

1. The widget supports various sampling methods.

• Cross-validation splits the data into a given number of folds (usually 5 or 10). The algorithm is tested by
holding out examples from one fold at a time; the model is induced from other folds and examples from
the held out fold are classified. This is repeated for all the folds.

• Leave-one-out is similar, but it holds out one instance at a time, inducing the model from all others and
then classifying the held out instances. This method is obviously very stable, reliable . . . and very slow.

• Random sampling randomly splits the data into the training and testing set in the given proportion (e.g.
70:30); the whole procedure is repeated for a specified number of times.

• Test on train data uses the whole data set for training and then for testing. This method practically always
gives wrong results.

• Test on test data: the above methods use the data from Data signal only. To input another data set
with testing examples (for instance from another file or some data selected in another widget), we select
Separate Test Data signal in the communication channel and select Test on test data.

2. Only Test on test data requires a target class, e.g. having the disease or being of subvariety Iris setosa. When
Target class is (None), the methods return the average value. Target class can be selected at the bottom of the
widget.

3. Produce a report.

4. The widget will compute a number of performance statistics:

2.6. Evaluation 249

https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Orange Visual Programming Documentation, Release 3

250 Chapter 2. Widgets

Orange Visual Programming Documentation, Release 3

2.6. Evaluation 251

Orange Visual Programming Documentation, Release 3

Classification

• Area under ROC is the area under the receiver-operating curve.

• Classification accuracy is the proportion of correctly classified examples.

• F-1 is a weighted harmonic mean of precision and recall (see below).

• Precision is the proportion of true positives among instances classified as positive, e.g. the proportion of Iris
virginica correctly identified as Iris virginica.

• Recall is the proportion of true positives among all positive instances in the data, e.g. the number of sick among
all diagnosed as sick.

Regression

• MSE measures the average of the squares of the errors or deviations (the difference between the estimator and
what is estimated).

• RMSE is the square root of the arithmetic mean of the squares of a set of numbers (a measure of imperfection
of the fit of the estimator to the data)

• MAE is used to measure how close forecasts or predictions are to eventual outcomes.

252 Chapter 2. Widgets

http://gim.unmc.edu/dxtests/roc3.htm
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Mean_absolute_error

Orange Visual Programming Documentation, Release 3

• R2 is interpreted as the proportion of the variance in the dependent variable that is predictable from the inde-
pendent variable.

Example

In a typical use of the widget, we give it a data set and a few learning algorithms and we observe their performance in
the table inside the Test&Score widget and in the ROC. The data is often preprocessed before testing; in this case we
did some manual feature selection (Select Columns widget) on Titanic data set, where we want to know only the sex
and status of the survived and omit the age.

Another example of using this widget is presented in the documentation for the Confusion Matrix widget.

2.6. Evaluation 253

https://en.wikipedia.org/wiki/Coefficient_of_determination

	Getting Started
	Widgets

