

Orange Visual Programming

Getting Started

Here we need to copy the getting started guide.

	Loading your Data

Widgets

Data

	File

	SQL Table

	Save Data

	Data Info

	Data Table

	Select Columns

	Select Rows

	Data Sampler

	Transpose

	Discretize

	Continuize

	Randomize

	Concatenate

	Paint Data

	Python Script

	Feature Constructor

	Edit Domain

	Image Viewer

	Impute

	Merge Data

	Outliers

	Preprocess

	Purge Domain

	Rank

	Color

Visualize

	Box Plot

	Distributions

	Heat Map

	Scatter Plot

	Venn Diagram

	Linear Projection

	Scatter Map

	Sieve Diagram

	Pythagorean Tree

	Pythagorean Forest

	CN2 Rule Viewer

	Mosaic Display

	Silhouette Plot

	Tree Viewer

	Geo Map

	Nomogram

Classify

	Naive Bayes

	Logistic Regression

	Classification Tree

	Nearest Neighbors

	Load Classifier

	Majority

	Random Forest Classification

	Save Classifier

	SVM

	CN2 Rule Induction

	AdaBoost

Regression

	Linear Regression

	Mean Learner

	Nearest Neighbors

	Stochastic Gradient Descent

	SVM Regression

	Regression Tree

	Regression Tree Viewer

	Random Forest Regression

Unsupervised

	PCA

	Correspondence Analysis

	Distance Map

	Distances

	Distance Matrix

	Distance Transformation

	Distance File

	Save Distance Matrix

	Hierarchical Clustering

	k-Means

	MDS

	Manifold Learning

Evaluation

	Calibration Plot

	Confusion Matrix

	Lift Curve

	Predictions

	ROC Analysis

	Test & Score

Loading your Data

Orange comes with its own data format [http://docs.orange.biolab.si/reference/rst/Orange.data.formats.html#tab-delimited], but can
also handle native Excel (.xlsx or .xls), comma- or tab-delimited data files. The input data
set is usually a table, with data instances (samples) in rows and
data attributes in columns. Attributes can be of different types
(continuous, discrete, time, and strings) and have assigned roles (input features, meta attributes, and class). Data attribute type and role can be provided
in the data table header. They can also be subsequently changed in the File widget,
while data role can also be modified with Select Columns widget.

In a Nutshell

	Orange can import any comma- or tab-delimited data file, or Excel’s native files or Google Sheets document. Use File
widget to load the data and, if needed, define the class and meta attributes.

	Attribute names in the column header
can be preceded with a label followed by a hash. Use c for class
and m for meta attribute, i to ignore a column, w for weights column, and C, D, T, S for
continuous, discrete, time, and string attribute types. Examples: C#mph,
mS#name, i#dummy.

	An alternative to the hash notation is Orange’s native format with three
header rows: the first with attribute names, the second specifying
the type (continuous, discrete, time, or string), and the third
proving information on the attribute role (class, meta, weight or ignore).

Example: Data from Excel

Here is an example data set (download it from sample.xlsx) as entered in Excel:

[image: ../_images/spreadsheet1.png]
The file contains a header row, eight data instances (rows) and seven data attributes (columns). Empty cells in the table denote missing data entries. Rows represent genes; their function (class) is provided in the first column and their name in the second. The remaining columns store measurements that characterize each gene. With this data, we could, say, develop a classifier that would predict gene function from its characteristic measurements.

Let us start with a simple workflow that reads the data and displays it in a table:

[image: ../_images/file-data-table-workflow.png]
To load the data, open the File widget (double click on the icon of the widget), click on the file browser icon (”...”) and locate the downloaded file (from sample.xlsx) on your disk:

[image: ../_images/File.png]

File Widget: Setting the Attribute Type and Role

The File widget sends the data to the Data Table. Double click the Data Table to see its contents:

[image: ../_images/table-widget.png]
Orange correctly assumed that a column with gene names is meta information, which is displayed in the Data Table in columns shaded with light-brown. It has not guessed that function, the first non-meta column in our data file, is a class column. To correct this in Orange, we can adjust attribute role in the column display of File widget (below). Double-click the feature label in the function row and select target instead. This will set function attribute as our target (class) variable.

[image: ../_images/File-set-feature-kind.png]
You can also change attribute type from nominal to numeric, from string to datetime, and so on. Naturally, data values have to suit the specified attribute type. Datetime accepts only values in ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] format, e.g. 2016-01-01 16:16:01. Orange would also assume the attribute is numeric if it has several different values, else it would be considered nominal. All other types are considered strings and are as such automatically categorized as meta attributes.

Change of attribute roles and types should be confirmed by clicking the Apply button.

Select Columns: Setting the Attribute Role

Another way to set the data role is to feed the data to the Select Columns widget:

[image: ../_images/select-columns-schema.png]
Opening Select Columns reveals Orange’s classification of attributes. We would like all of our continuous attributes to be data features, gene function to be our target variable and gene names considered as meta attributes. We can obtain this by dragging the attribute names around the boxes in Select Columns:

[image: ../_images/select-columns-start.png]
To correctly reassign attribute types, drag attribute named function
to a Class box, and attribute named gene to a Meta Attribute
box. The Select Columns widget should now look like this:

[image: ../_images/select-columns-reassigned.png]
Change of attribute types in Select Columns widget should be confirmed
by clicking the Apply button. The data from this widget is fed into
Data Table that now renders the data just the way we intended:

[image: ../_images/data-table-with-class1.png]
We could also define the domain for this data set in a different way.
Say, we could make the data set ready for regression, and use heat 0
as a continuous class variable, keep gene function and name as meta
variables, and remove heat 10 and heat 20 from the data set:

[image: ../_images/select-columns-regression.png]
By setting the attributes as above, the rendering of the data in the
Data Table widget gives the following output:

[image: ../_images/data-table-regression1.png]

Header with Attribute Type Information

Consider again the sample.xlsx data set. This time
we will augment the names of the attributes with prefixes
that define attribute type (continuous, discrete, time, string) and role (class or meta attribute)
Prefixes are separated from the attribute name with a hash sign (“#”). Prefixes for attribute roles are:

	c: class attribute

	m: meta attribute

	i: ignore the attribute

	w: instance weights

and for the type:

	C: Continuous

	D: Discrete

	T: Time

	S: String

This is how the header with augmented attribute names looks like in
Excel (sample-head.xlsx):

[image: ../_images/spreadsheet-simple-head1.png]
We can again use a File widget to load this data set and then render it in the Data Table:

[image: ../_images/select-cols-simplified-header.png]
Notice that the attributes we have ignored (label “i” in the
attribute name) are not present in the data set.

Three-Row Header Format

Orange’s legacy native data format is a tab-delimited text file with three header rows. The first row lists the attribute names, the second row defines their type (continuous, discrete, time and string, or abbreviated c, d, t, and s), and the third row an optional role (class, meta, weight, or ignore). Here is an example:

[image: ../_images/excel-with-tab1.png]

Data from Google Sheets

Orange can read data from Google Sheets, as long as it conforms to the data presentation rules we have presented above. In Google Sheets, copy the shareable link (Share button, then Get shareable link) and paste it in the Data File / URL box of the File widget. For a taste, here’s one such link you can use: http://bit.ly/1J12Tdp, and the way we have entered it in the File widget:

[image: ../_images/File-Google-Sheet.png]

Data from LibreOffice

If you are using LibreOffice, simply save your files in Excel (.xlsx or .xls) format (available from the drop-down menu under Save As Type).

[image: ../_images/saving-tab-delimited-files.png]

Datetime Format

To avoid ambiguity, Orange supports date and/or time formatted in one of ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] formats.
E.g., the following values are all valid:

2016
2016-12-27
2016-12-27 14:20:51+02:00
16:20

File

[image: ../../_images/file.png]

Reads attribute-value data from an input file.

Signals

Inputs:

	(None)

Outputs:

	Data

Attribute-valued data from the input file

Description

The File widget reads the input data
file (data table
with data instances) and sends the data set to its output channel.
The history of most recently opened files is maintained in the widget.
The widget also includes a directory with sample data sets that come
pre-installed with Orange.

The widget reads data from Excel (.xlsx), simple tab-delimited
(.txt), comma-separated files (.csv) or URLs.

[image: ../../_images/File-stamped.png]

	Browse through previously opened data files, or load any of the sample ones.

	Browse for a data file.

	Reloads currently selected data file.

	Insert data from URL adresses, including data from Google Sheets.

	Information on the loaded data set: data set size, number and types of data features.

	Additional information on the features in the data set. Features can be edited by double-clicking on them. The user can change the attribute names, select the type of variable per each attribute (Continuous, Nominal, String, Datetime), and choose how to further define the attributes (as Features, Targets or Meta). The user can also decide to ignore an attribute.

	Browse documentation data sets.

	Produce a report.

Example

Most Orange workflows would probably start with the File widget. In
the schema below, the widget is used to read the data that is sent to
both the Data Table and the Box Plot widget.

[image: ../../_images/File-Workflow.png]

Loading your data

	Orange can import any comma, .xlsx or tab-delimited data file or URL. Use the
File widget and then, if needed, select class and meta attributes.

	To specify the domain and the type of the attribute, attribute names
can be preceded with a label followed by a hash. Use c for class and
m for meta attribute, i to ignore a column, and C, D, S for
continuous, discrete and string attribute types. Examples: C#mpg,
mS#name, i#dummy. Make sure to set Import Options in
File widget and set the header to Orange simplified header.

	Orange’s native format is a tab-delimited text file with three header
rows. The first row contains attribute names, the second the type
(continuous, discrete or string), and the third the
optional element (class, meta or string).

[image: ../../_images/spreadsheet-simple-head11.png]

Read more on loading your data here.

SQL Table

[image: ../../_images/sql-table.png]

Reads data from an SQL database.

Signals

Inputs:

	(None)

Outputs:

	Data

Attribute-valued data from the database

Description

The SQL widget accesses data stored in an SQL database. It can
connect to PostgreSQL (requires psycopg2 [http://initd.org/psycopg/] module)
or SQL Server [https://www.microsoft.com/en-us/sql-server/]
(requires pymssql [http://pymssql.org/en/stable/] module).

[image: ../../_images/sql.png]

Save Data

[image: ../../_images/save.png]

Saves data to a file.

Signals

Inputs:

	Data

A data set.

Outputs:

	(None)

Description

The Save Data widget considers a data set provided in the input channel
and saves it to a data file with a specified name. It can save the
data as a tab-delimited or a comma-separated file.

The widget does not save the data every time it receives a new signal in
the input as this would constantly (and, mostly, inadvertently)
overwrite the file. Instead, the data is saved only after a new file
name is set or the user pushes the Save button.

[image: ../../_images/Save-stamped.png]

	Save by overwriting the existing file.

	Save as to create a new file.

Example

In the workflow below, we used the Zoo data set. We loaded the data into the Scatter Plot widget, with which
we selected a subset of data instances and pushed them to the
Save Data widget to store them in a file.

[image: ../../_images/Save-Workflow.png]

Data Info

[image: ../../_images/data-info.png]

Displays information on a selected data set.

Signals

Inputs:

	Data

A data set.

	Selected Data

A data subset.

Outputs:

	(None)

Description

A simple widget that presents information on data set size, features,
targets, meta attributes, and location.

[image: ../../_images/data-info-stamped.png]

	Information on data set size

	Information on discrete and continuous features

	Information on targets

	Information on meta attributes

	Information on where the data is stored

	Produce a report.

Example

Below, we compare the basic statistics of two Data Info widgets - one
with information on the entire data set and the other with
information on the (manually) selected subset from the Scatterplot
widget. We used the Iris data set.

[image: ../../_images/DataInfo-Example.png]

Data Table

[image: ../../_images/data-table.png]

Displays attribute-value data in a spreadsheet.

Signals

Inputs:

	Data

Attribute-valued data set.

Outputs:

	Selected Data

Selected data instances.

Description

The Data Table widget receives one or more data sets in its input and
presents them as a spreadsheet. Data instances may be sorted by
attribute values. The widget also supports manual selection of data
instances.

[image: ../../_images/DataTable-stamped.png]

	The name of the data set (usually the input data file). Data
instances are in rows and their attribute values in columns. In this
example, the data set is sorted by the attribute “sepal length”.

	Info on current data set size and number and types of attributes

	Values of continuous attributes can be visualized with bars; colors
can be attributed to different classes.

	Data instances (rows) can be selected and sent to the widget’s output
channel.

	Use the Restore Original Order button to reorder data instances after
attribute-based sorting.

	Produce a report.

	While auto-send is on, all changes will be automatically communicated
to other widgets. Otherwise, press Send Selected Rows.

Example

We used two File widgets to read the Iris and Glass data set
(provided in Orange distribution), and send them to the Data Table
widget.

[image: ../../_images/DataTable-Schema.png]

Selected data instances in the first Data Table are passed to the
second Data Table. Notice that we can select which data set to view
(iris or glass). Changing from one data set to another alters the
communicated selection of data instances if Commit on any change
is selected.

[image: ../../_images/DataTable-Example.png]

Select Columns

[image: ../../_images/select-columns.png]

Manual selection of data attributes and composition of data domain.

Signals

Inputs:

	Data

Attribute-valued data set.

Outputs:

	Data

Attribute-valued data set composed using the domain specification from
the widget.

Description

The Select Columns widget is used to manually compose your data domain [https://en.wikipedia.org/wiki/Data_domain]. The user can decide
which attributes will be used and how. Orange distinguishes between
ordinary attributes, (optional) class attributes and meta attributes.
For instance, for building a classification model, the domain would be
composed of a set of attributes and a discrete class attribute. Meta
attributes are not used in modelling, but several widgets can use them
as instance labels.

Orange attributes have a type and are either discrete, continuous or a
character string. The attribute type is marked with a symbol appearing
before the name of the attribute (D, C, S, respectively).

[image: ../../_images/SelectColumns-stamped.png]

	Left-out data attributes that will not be in the output data file

	Data attributes in the new data file

	Target variable. If none, the new data set will be without a target variable.

	Meta attributes of the new data file. These attributes are included
in the data set but are, for most methods, not considered in the
analysis.

	Produce a report.

	Reset the domain composition to that of the input data file.

	Tick if you wish to auto-apply changes of the data domain.

	Apply changes of the data domain and send the new data file to the
output channel of the widget.

Examples

In the workflow below, the Iris data from the File widget is fed into
the Select Columns widget, where we select to output only two
attributes (namely petal width and petal length). We view both the
original data set and the data set with selected columns in the Data
Table widget.

[image: ../../_images/SelectColumns-Example1.png]

For a more complex use of the widget, we composed a workflow to redefine
the classification problem in the heart-disease data set. Originally, the
task was to predict if the patient has a coronary artery diameter
narrowing. We changed the problem to that of gender classification, based
on age, chest pain and cholesterol level, and informatively kept the
diameter narrowing as a meta attribute.

[image: ../../_images/SelectColumns-Example2.png]

Select Rows

[image: ../../_images/select-rows.png]

Selects data instances based on conditions over data features.

Signals

Inputs:

	Data

Data set.

Outputs:

	Matching Data

Instances that match the conditions.

	Non-Matching Data

Instances that do not match the conditions.

Description

This widget selects a subset from an input data set, based on user-defined
conditions. Instances that match the selection rule are placed in the
output Matching Data channel.

Criteria for data selection are presented as a collection of conjuncted
terms (i.e. selected items are those matching all the terms in
‘Conditions‘).

Condition terms are defined through selecting an attribute, selecting an operator from a list of operators, and, if needed, defining the
value to be used in the condition term. Operators are different for
discrete, continuous and string attributes.

[image: ../../_images/SelectRows-stamped.png]

	Conditions you want to apply, their operators and related values

	Add a new condition to the list of conditions.

	Add all the possible variables at once.

	Remove all the listed variables at once.

	Information on the input data set and information on instances that match the condition(s)

	Purge the output data.

	When the Send automatically box is ticked, all changes will be
automatically communicated to other widgets.

	Produce a report.

Any change in the composition of the condition will update the information
pane (Data Out).

If Send automatically is selected, then the output is updated on any
change in the composition of the condition or any of its terms.

Example

In the workflow below, we used the Zoo data from the File widget and
fed it into the Select Rows widget. In the widget, we chose to output only
two animal types, namely fish and reptiles. We can inspect both the
original data set and the data set with selected rows in the Data
Table widget.

[image: ../../_images/SelectRows-Example.png]

In the next example, we used the data from the Titanic data set and
similarly fed it into the Box Plot widget. We first observed the
entire data set based on survival. Then we selected only first class passengers in the Select Rows widget and fed it again into the Box Plot.
There we could see all the first class passengers listed by their survival rate and grouped by gender.

[image: ../../_images/SelectRows-Workflow.png]

Data Sampler

[image: ../../_images/data-sampler.png]

Selects a subset of data instances from an input data set.

Signals

Inputs:

	Data

Input data set to be sampled.

Outputs:

	Data Sample

A set of sampled data instances.

	Remaining Data

All other data instances from the input data set, which are not included in
the sample.

Description

The Data Sampler widget implements several means of sampling data from
an input channel. It outputs a sampled and a complementary
data set (with instances from the input set that are not included in the
sampled data set). The output is processed after the input data set is
provided and Sample Data is pressed.

[image: ../../_images/DataSampler-stamped.png]

	Information on the input and output data set

	The desired sampling method:
	Fixed proportion of data returns a selected percentage of the
entire data (e.g. 70% of all the data)

	Fixed sample size returns a selected number of data instances
with a chance to set Sample with replacement, which always samples
from the entire data set (does not subtract instances already in
the subset)

	Cross Validation [https://en.wikipedia.org/wiki/Cross-validation_(statistics)]
partitions data instances into complementary subsets, where you can
select the number of folds (subsets) and which fold you want to
use as a sample.

	Replicable sampling maintains sampling patterns that can be carried
across users, while stratification mimics the composition of the
input data set.

	Produce a report.

	Press Sample data to output the data sample.

Examples

First, let’s see how the Data Sampler works. Let’s look at the
information on the original data set in the Data Info widget. We see
there are 24 instances in the data (we used lenses.tab). We sampled
the data with the Data Sampler widget and we chose to go with a fixed
sample size of 5 instances for simplicity. We can observe the sampled
data in the Data Table widget. The second Data Table shows the
remaining 19 instances that weren’t in the sample.

[image: ../../_images/DataSampler-Example1.png]

In the workflow below, we have sampled 10 data instances from the Iris
data set and sent the original data and the sample to Scatter Plot
widget for exploratory data analysis. The sampled data instances are plotted
with filled circles, while the original data set is represented with
empty circles.

[image: ../../_images/DataSampler-Example.png]

Transpose

[image: ../../_images/transpose.png]

Transposes a data table.

Signals

Inputs:

	Data

A data set.

Outputs:

	Data

Transposed data set

Description

Transpose widget transposes data table.

[image: ../../_images/transpose-stamped.png]

Example

This is a simple workflow showing how to use Transpose. Connect the widget to
File widget. The output of Transpose is a transposed data table
with rows as columns and columns as rows. You can observe the result in a Data Table.

[image: ../../_images/transpose-example.png]

Discretize

[image: ../../_images/discretize.png]

Discretizes continuous attributes from an input data set.

Signals

Inputs:

	Data

Attribute-valued data set.

Outputs:

	Data

A data set with discretized values.

Description

The Discretize widget
discretizes [https://en.wikipedia.org/wiki/Discretization]
continuous attributes with a selected method.

[image: ../../_images/Discretize-All-stamped.png]

	The basic version of the widget is rather simple. It allows choosing
between three different discretizations.

	Entropy-MDL [http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL2/PDF/022.pdf],
invented by Fayyad and Irani is a top-down discretization, which
recursively splits the attribute at a cut maximizing information
gain, until the gain is lower than the minimal description length of
the cut. This discretization can result in an arbitrary number of
intervals, including a single interval, in which case the attribute is
discarded as useless (removed).

	Equal-frequency [http://www.saedsayad.com/unsupervised_binning.htm]
splits the attribute into a given number of intervals, so that
they each contain approximately the same number of instances.

	Equal-width [https://en.wikipedia.org/wiki/Data_binning]
evenly splits the range between the smallest and the largest observed
value. The Number of intervals can be set manually.

	The widget can also be set to leave the attributes continuous or to
remove them.

	To treat attributes individually, go to Individual Attribute
Settings. They show a specific discretization of each attribute and
allow changes. First, the top left list shows the cut-off
points for each attribute. In the snapshot, we used the entropy-MDL
discretization, which determines the optimal number of intervals
automatically; we can see it discretized the age into seven intervals
with cut-offs at 21.50, 23.50, 27.50, 35.50, 43.50, 54.50 and 61.50,
respectively, while the capital-gain got split into many intervals
with several cut-offs. The final weight (fnlwgt), for instance, was
left with a single interval and thus removed.

On the right, we can select a specific discretization method for each
attribute. Attribute “fnlwgt” would be removed by the MDL-based
discretization, so to prevent its removal, we select the attribute and
choose, for instance, Equal-frequency discretization. We could also
choose to leave the attribute continuous.

	Produce a report.

	Tick Apply automatically for the widget to automatically commit changes. Alternatively, press Apply.

Example

In the schema below, we show the Iris data set with continuous attributes
(as in the original data file) and with discretized attributes.

[image: ../../_images/Discretize-Example.png]

Continuize

[image: ../../_images/continuize.png]

Turns discrete attributes into continuous dummy variables.

Signals

Inputs:

	Data

Input data set

Outputs:

	Data

Output data set

Description

The Continuize widget receives a data set in the input and outputs the
same data set in which the discrete attributes (including binary attributes)
are replaced with continuous ones.

[image: ../../_images/Continuize-stamped.png]

	Continuization methods [https://en.wikipedia.org/wiki/Continuity_correction], which define the treatment of multivalued discrete attributes. Say that we have a discrete attribute status with the values low, middle and high, listed in that order. Options for their transformation are:
	Target or First value as base: the attribute will be transformed into two continuous attributes, status=middle with values 0 or 1 signifying whether the original attribute had value middle on a particular example, and similarly, status=high. Hence, a three-valued attribute is transformed into two continuous attributes, corresponding to all except the first value of the attribute.

	Most frequent value as base: similar to the above, except that the data is analyzed and the most frequent value is used as a base. So, if most examples have the value middle, the two newly constructed continuous attributes will be status=low and status=high.

	One attribute per value: this would construct three continuous attributes out of a three-valued discrete one.

	Ignore multinominal attributes: removes the multinominal attributes from the data.

	Treat as ordinal: converts the attribute into a continuous attribute with values 0, 1, and 2.

	Divide by number of values: same as above, except that the values are normalized into range 0-1. So, our case would give values 0, 0.5 and 1.

	Define the treatment of continuous attributes. You will usually
prefer the Leave them as they are option. The alternative is Normalize by
span, which will subtract the lowest value found in the data and
divide by the span, so all values will fit into [0, 1]. Finally,
Normalize by standard deviation subtracts the average and divides by the
deviation.

	Define the treatment of class attributes. Besides leaving it as it
is, there are also a couple of options available for
multinominal attributes, except for those options which split the
attribute into more than one attribute - this obviously cannot be
supported since you cannot have more than one class attribute.

	With value range, you can define the values of new attributes.
In the above text, we supposed the range from 0 to 1. You can change
it to from -1 to 1.

	Produce a report.

	If Apply automatically is ticked, changes are committed automatically.
Otherwise, you have to press Apply after each change.

Examples

First, let’s see what is the output of the Continuize widget. We feed the
original data (the Heart disease data set) into the Data Table and see how they look like. Then
we continuize the discrete values and observe them in another Data
Table.

[image: ../../_images/Continuize-Example1.png]

In the second example, we show a typical use of this widget - in order to
properly plot the linear projection of the data, discrete attributes need to
be converted to continuous ones and that is why we put the data through the
Continuize widget before drawing it. The attribute “chest pain”
originally had four values and was transformed into three continuous
attributes; similar happened to gender, which was transformed into a
single attribute “gender=female”.

[image: ../../_images/Continuize-Example2.png]

Randomize

[image: ../../_images/randomize.png]

Shuffles classes, attributes and/or metas of an input data set.

Signals

Inputs:

	Data

Data set.

Outputs:

	Data

Randomized data set.

Description

The Randomize widget receives a data set in the input and outputs the same
data set in which the classes, attributes or/and metas are shuffled.

[image: ../../_images/Randomize-Default.png]

	Select group of columns of the data set you want to shuffle.

	Select proportion of the data set you want to shuffle.

	Produce replicable output.

	If Apply automatically is ticked, changes are committed automatically.
Otherwise, you have to press Apply after each change.

	Produce a report.

Example

The Randomize widget is usually placed right after
(e.g. File widget. The basic usage is shown in the following
workflow, where values of class variable of Iris data set are randomly shuffled.

[image: ../../_images/Randomize-Example1.png]

In the next example we show how shuffling class values influences model
performance on the same data set as above.

[image: ../../_images/Randomize-Example2.png]

Concatenate

[image: ../../_images/concatenate.png]

Concatenates data from multiple sources.

Signals

Inputs:

	Primary Data

A data set that defines the attribute set.

	Additional Data

An additional data set.

Outputs:

	Data

Description

The widget concatenates multiple sets of instances (data sets). The
merge is “vertical”, in a sense that two sets of 10 and 5 instances
yield a new set of 15 instances.

[image: ../../_images/Concatenate-stamped.png]

	Set the attribute merging method.

	Add the identification of source data sets to the output data set.

	Produce a report.

	If Apply automatically is ticked, changes are communicated automatically. Otherwise, click Apply.

If one of the tables is connected to the widget as the primary table,
the resulting table will contain its own attributes. If there is no
primary table, the attributes can be either a union of all attributes
that appear in the tables specified as Additional Tables, or their
intersection, that is, a list of attributes common to all the connected
tables.

Example

As shown below, the widget can be used for merging data from two separate files. Let’s say we have two data sets with the
same attributes, one containing instances from the first experiment and the other
instances from the second experiment and we wish to join the two data
tables together. We use the Concatenate widget to merge the data sets by
attributes (appending new rows under existing attributes).

Below, we used a modified Zoo data set. In the
first File widget, we loaded only the animals
beginning with the letters A and B and in the second
one only the animals beginning with the letter C. Upon concatenation, we
observe the new data in the Data Table widget, where we see the
complete table with animals from A to C.

[image: ../../_images/Concatenate-Example.png]

Paint Data

[image: ../../_images/paint-data.png]

Paints data on a 2D plane. You can place individual data points or
use a brush to paint larger data sets.

Signals

Inputs

	(None)

Outputs

	Data

Attribute-valued data set created in the widget

Description

The widget supports the creation of a new data set by visually placing
data points on a two-dimension plane. Data points can be placed on the
plane individually (Put) or in a larger number by brushing (Brush).
Data points can belong to classes if the data is intended to be used in
supervised learning.

[image: ../../_images/PaintData-stamped.png]

	Name the axes and select a class to paint data instances. You can
add or remove classes. Use only one class to create classless,
unsupervised data sets.

	Drawing tools. Paint data points with Brush (multiple data
instances) or Put (individual data instance). Select data points
with Select and remove them with the Delete/Backspace key. Reposition
data points with Jitter [https://en.wikipedia.org/wiki/Jitter]
(spread) and Magnet (focus). Use Zoom and scroll to zoom in or
out. Below, set the radius and intensity for Brush, Put, Jitter and
Magnet tools.

	Reset to Input Data.

	Save Image saves the image to your computer in a .svg or .png
format.

	Produce a report.

	Tick the box on the left to automatically commit changes to other
widgets. Alternatively, press Send to apply them.

Example

In the example below, we have painted a data set with 4 classes. Such data set
is great for demonstrating k-means and hierarchical clustering methods.
In the screenshot, we see that k-means, overall, recognizes
clusters better than hierarchical clustering.
It returns a score rank, where the best score (the one with the highest value) means the most likely number
of clusters. Hierarchical clustering, however, doesn’t group the right
classes together. This is a great tool for learning and exploring
statistical concepts.

[image: ../../_images/PaintData-Example.png]

Python Script

[image: ../../_images/python-script.png]

Extends functionalities through Python scripting.

Signals

Inputs:

	in_data (Orange.data.Table)

Input data set bound to in_data variable in the script’s local
namespace.

	in_distance (Orange.core.SymMatrix)

Input symmetric matrix bound to in_distance variable in the script’s
local namespace.

	in_learner (Orange.classification.Learner)

Input learner bound to in_learner variable in the script’s local
namespace.

	in_classifier (Orange.classification.Learner)

Input classifier bound to in_classifier variable in the script’s
local namespace.

	in_object (object)

Input python object bound to in_object variable in the script’s
local namespace.

Outputs:

	out_data (Orange.data.Table)

Data set retrieved from out_data variable in the script’s local
namespace after execution.

	out_distance (Orange.core.SymMatrix)

Symmetric matrix retrieved from out_distance variable in the
script’s local namespace after execution.

	out_learner (Orange.classification.Learner)

Learner retrieved from out_learner variable in the script’s local
namespace.

	out_classifier (Orange.classification.Learner)

Classifier retrieved from out_classifier variable in the script’s
local namespace after execution.

	out_object (object)

Python object retrieved from out_object variable in the script’s
local namespace after execution.

Description

Python Script widget can be used to run a python script in the
input, when a suitable functionality is not implemented in an existing
widget. The script has in_data, in_distance, in_learner,
in_classifier and in_object variables (from input signals) in
its local namespace. If a signal is not connected or it did not yet
receive any data, those variables contain None.

After the script is executed, out_data, out_distance, …
variables from the script’s local namespace are extracted and used as
outputs of the widget. The widget can be further connected to other
widgets for visualizing the output.

For instance the following script would simply pass on all signals it
receives:

out_data = in_data
out_distance = in_distance
out_learner = in_learner
out_classifier = in_classifier
out_object = in_object

Note

You should not modify the input objects in place.

[image: ../../_images/PythonScript-stamped.png]

	Info box contains names of basic operators for Orange Python script.

	The Library control can be used to manage multiple scripts.
Pressing “+” will add a new entry and open it in the Python script
editor. When the script is modified, its entry in the Library will
change to indicate it has unsaved changes. Pressing Update will
save the script (keyboard shortcut ctrl + s). A script can be removed
by selecting it and pressing the “-” button.

	Pressing Execute in the Run box executes the script (using
exec). Any script output (from print) is captured and
displayed in the Console below the script. If Auto execute is
checked, the script is run any time inputs to the widget change.

	The Python script editor on the left can be used to edit a script
(it supports some rudimentary syntax highlighting).

	Console displays the output of the script.

Examples

Python Script widget is intended to extend functionalities for advanced users.

One can, for example, do batch filtering by attributes. We used zoo.tab for the example
and we filtered out all the attributes that have more than 5 discrete values. This in
our case removed only ‘leg’ attribute, but imagine an example where one would have
many such attributes.

from Orange.data import Domain, Table
domain = Domain([attr for attr in in_data.domain.attributes
 if attr.is_continuous or len(attr.values) <= 5],
 in_data.domain.class_vars)
out_data = Table(domain, in_data)

[image: ../../_images/PythonScript-filtering.png]

The second example shows how to round all the values in a few lines of code. This time
we used wine.tab and rounded all the values to whole numbers.

import numpy as np
out_data = in_data.copy()
#copy, otherwise input data will be overwritten
np.round(out_data.X, 0, out_data.X)

[image: ../../_images/PythonScript-round.png]

The third example introduces some gaussian noise to the data. Again we make a copy of the input data, then walk through all the values with a double for loop and add random noise.

import random
from Orange.data import Domain, Table
new_data = in_data.copy()
for inst in new_data:
 for f in inst.domain.attributes:
 inst[f] += random.gauss(0, 0.02)
out_data = new_data

[image: ../../_images/PythonScript-gauss.png]

The final example uses Orange3-Text add-on. Python Script is very useful for
custom preprocessing in text mining, extracting new features from strings, or utilizing
advanced nltk or gensim functions. Below, we simply tokenized our input data from deerwester.tab by
splitting them by whitespace.

print('Running Preprocessing ...')
tokens = [doc.split(' ') for doc in in_data.documents]
print('Tokens:', tokens)
out_object = in_data
out_object.store_tokens(tokens)

You can add a lot of other preprocessing steps to further adjust the output. The output of Python Script can be used with any widget that accepts the type of output your script produces. In this case, connection is green, which signalizes the right type of input for Word Cloud widget.

[image: ../../_images/PythonScript-Example3.png]

Feature Constructor

[image: ../../_images/feature-constructor.png]

Add new features to your data set.

Signals

Inputs:

	Data

A data set

Outputs:

	Data

A modified data set

Description

The Feature Constructor allows you to manually add features (columns)
into your data set. The new feature can be a computation of an existing
one or a combination of several (addition, subtraction, etc.). You can
choose what type of feature it will be (discrete, continuous or string)
and what its parameters are (name, value, expression). For continuous
variables you only have to construct an expression in Python.

[image: ../../_images/feature-constructor1-stamped.png]

	List of constructed variables

	Add or remove variables.

	New feature name

	Expression in Python

	Select a feature.

	Select a function.

	Produce a report.

	Press Send to communicate changes.

For discrete variables, however, there’s a bit more work. First add or
remove the values you want for the new feature. Then select the base
value and the expression. In the example below, we have constructed an
expression with ‘if lower than’ and defined three conditions; the
program ascribes 0 (which we renamed to lower) if the original value is
lower than 6, 1 (mid) if it is lower than 7 and 2 (higher) for all the
other values. Notice that we use an underscore for the feature name
(e.g. petal_length).

[image: ../../_images/feature-constructor2-stamped.png]

	List of variable definitions

	Add or remove variables

	New feature name

	Expression in Python

	Select a feature.

	Select a function.

	Assign values.

	Produce a report.

	Press Send to communicate changes.

Example

With the Feature Constructor you can easily adjust or combine existing
features into new ones. Below, we added one new discrete feature to the
Titanic data set. We created a new attribute called Financial status
and set the values to be rich if the person belongs to the first class
(status = first) and not rich for everybody else. We can see the new
data set with Data Table widget.

[image: ../../_images/FeatureConstructor-Example.png]

Hints

If you are unfamiliar with Python math language, here’s a quick
introduction.

	+, - to add, subtract

	* to multiply

	/ to divide

	% to divide and return the remainder

	** for exponent (for square root square by 0.5)

	// for floor division

	<, >, <=, >= less than, greater than, less or equal, greater or equal

	== for equal

	!= for not equal

As in the example: (value) if (feature name) < (value), else (value)
if (feature name) < (value), else (value)

[Use value 1 if feature is less than specified value, else use value 2
if feature is less than specified value 2, else use value 3.]

See more
here [http://www.tutorialspoint.com/python/python_basic_operators.htm].

Edit Domain

[image: ../../_images/edit-domain.png]

Signals

Inputs:

	Data

An input data set

Outputs:

	Data

An edited output data set

Description

This widget can be used to edit/change a data set’s domain.

[image: ../../_images/EditDomain-stamped.png]

	All features (including meta attributes) from the input data set are
listed in the Domain Features list in the box on the left.
Selecting one feature displays an editor on the right.

	The name of the feature can be changed in the Name line edit. For
Discrete features, value names can also be changed in the Values
list box. Additonal feature annotations can be added/removed/edited
in the Labels box. To add a new label, click the “+” button and add
the Key and Value columns for the new entry. Selecting an
existing label and pressing “-” will remove the annotation.

	To revert the changes made to the feature, press the Reset Selected
button in the Reset box while the feature is selected in the
Domain Features list. Pressing Reset All will reset all features
in the domain at the same time.

	Pressing the Apply button will send the changed domain data set to the
output channel.

Example

Below, we demonstrate how to simply edit an existing domain. We selected the
lenses.tab data set and edited the perscription attribute. Where in
the original we had the values myope and hypermetrope, we changed it
into nearsightedness and farsightedness instead. For an easier
comparison, we fed both the original and edited data into the Data
Table widget.

[image: ../../_images/EditDomain-Example.png]

Image Viewer

[image: ../../_images/image-viewer.png]

Displays images that come with a data set.

Signals

Inputs:

	Data

A data set with images.

Outputs:

	Data

Images that come with the data.

Description

The Image Viewer widget can display images from a data set, which are
stored locally or on the internet. It can be used for image comparison,
while looking for similarities or discrepancies between selected data
instances (e.g. bacterial growth or bitmap representations of
handwriting).

[image: ../../_images/ImageViewer-stamped.png]

	Information on the data set

	Select the column with image data (links).

	Select the column with image titles.

	Zoom in or out.

	Saves the visualization in a file.

	Tick the box on the left to commit changes automatically.
Alternatively, click Send.

Examples

A very simple way to use this widget is to connect the File widget with
Image Viewer and see all the images that come with your data set.

[image: ../../_images/image-viewer-example1.png]

Alternatively, you can visualize only selected instances, as shown in the
example below.

[image: ../../_images/image-viewer-example2.png]

Impute

[image: ../../_images/impute.png]

Replaces unknown values in the data.

Signals

Inputs

	Data

A data set.

	Learner for Imputation

A learning algorithm to be used when values are imputed with a
predictive model. This algorithm, if given, substitutes the default
(1-NN).

Outputs

	Data

The same data set as in the input, but with the missing values imputed.

Description

Some Orange’s algorithms and visualizations cannot handle unknown values
in the data. This widget does what statisticians call imputation: it
substitutes missing values by values either computed from the data or
set by the user.

[image: ../../_images/impute-stamped.png]

	In the top-most box, Default method, the user can specify a general
imputation technique for all attributes.
	Don’t Impute does nothing with the missing values.

	Average/Most-frequent uses the average value (for continuous
attributes) or the most common value (for discrete attributes).

	As a distinct value creates new values to substitute the missing
ones.

	Model-based imputer constructs a model for predicting the missing
value, based on values of other attributes; a separate model is constructed
for each attribute. The default model is 1-NN learner, which takes the value from the most similar example
(this is sometimes referred to as hot deck imputation). This
algorithm can be substituted by one that the user connects to the
input signal Learner for Imputation. Note, however, that if there are
discrete and continuous attributes in the data, the algorithm needs
to be capable of handling them both; at the moment only 1-NN learner
can do that. (In the future, when Orange has more regressors, the Impute
widget may have separate input signals for discrete and continuous
models.)

	Random values computes the distributions of values for each
attribute and then imputes by picking random values from them.

	Remove examples with missing values removes the example
containing missing values. This check also applies to the class
attribute if Impute class values is checked.

	It is possible to specify individual treatment for each attribute,
which overrides the default treatment set. One can also specify a
manually defined value used for imputation. In the screenshot, we
decided not to impute the values of “normalized-losses” and
“make”, the missing values of “aspiration” will be replaced by
random values, while the missing values of “body-style” and
“drive-wheels” are replaced by “hatchback” and “fwd”,
respectively. If the values of “length”, “width” or “height”
are missing, the example is discarded. Values of all other attributes
use the default method set above (model-based imputer, in our case).

	The imputation methods for individual attributes are the same as default.
methods.

	Restore All to Default resets the individual attribute treatments
to default.

	Produce a report.

	All changes are committed immediately if Apply automatically is
checked. Otherwise, Apply needs to be ticked to apply any new
settings.

Example

To demonstrate how the Impute widget works, we played around with the Iris data set
and deleted some of the data. We used the Impute widget and selected the
Model-based imputer to impute the missing values. In another Data Table,
we see how the question marks turned into distinct values (“Iris-setosa, “Iris-versicolor”).

[image: ../../_images/Impute-Example.png]

Merge Data

[image: ../../_images/merge-data.png]

Merges two data sets, based on values of selected attributes.

Signals

Inputs:

	Data A

Attribute-valued data set.

	Data B

Attribute-valued data set.

Outputs:

	Merged Data

Instances from input data A to which attributes from input data B are
added.

Description

The Merge Data widget is used to horizontally merge two data sets, based
on values of selected attributes. In the input, two data sets are
required, A and B. The widget allows selection of an attribute from each
domain, which will be used to perform the merging. The widget produces
one output. It corresponds to instances from the input data A
to which attributes from B are appended, and B+A to instances from B to
which attributes from A are appended.

Merging is done by values of selected (merging) attributes. First,
the value of the merging attribute from A is taken and instances from B
are searched for matching values. If more than a single instance from B
is found, the first one is taken and horizontally merged with the
instance from A. If no instance from B matches the criterion, unknown
values are assigned to the appended attributes.

[image: ../../_images/MergeData-stamped.png]

	List of comparable attributes from Data A

	List of comparable attributes from Data B

	Information on Data A

	Information on Data B

	If checked, instances from B without the match are excluded form the output.
If not checked, instances from B without the match are assigned
unknown values to the appended attributes.

	Produce a report.

Example

Merging two data sets results in appending new attributes to the
original file, based on a selected common attribute. In the example
below, we wanted to merge the zoo.tab file containing only factual
data with zoo-with-images.tab
containing images. Both files share a common string attribute names. Now, we
create a workflow connecting the two files. The zoo.tab data is
connected to Data A input of the Merge Data widget, and the
zoo-with-images.tab data to the Data B input. Outputs of the
Merge Data widget is then connected to the Data Table widget.
In the latter, the Merged Data channels are shown, where image attributes
are added to the original data.

[image: ../../_images/MergeData-Example.png]

The case where we want to include all instances in the output, even those
where no match by attribute names was found, is shown in the following workflow.

[image: ../../_images/MergeData-Example2.png]

Hint

If the two data sets consist of equally-named attributes (other than
the ones used to perform the merging), Orange will check by default for
consistency of the values of these attributes and report an error in
case of non-matching values. In order to avoid the consistency checking,
make sure that new attributes are created for each data set: you may use the
‘Columns with the same name in different files represent different
variables‘ option in the File widget for loading the data.

Outliers

[image: ../../_images/outliers.png]

Simple outlier detection by comparing distances between instances.

Signals

Inputs:

	Data

A data set

	Distances

A distance matrix

Outputs:

	Outliers

A data set containing instances scored as outliers

	Inliers

A data set containing instances not scored as outliers

Description

The Outliers widget applies one of the two methods for outlier
detection. Both methods apply classification to the data set, one with
SVM (multiple kernels) and the other with elliptical envelope.
One-class SVM with non-linear kernels (RBF) performs well with
non-Gaussian distributions, while Covariance estimator works only for
data with Gaussian distribution.

[image: ../../_images/Outliers-stamped.png]

	Information on the input data, number of inliers and outliers based
on the selected model.

	Select the Outlier detection method:
	One class SVM with non-linear kernel (RBF): classifies data as
similar or different from the core class
	Nu is a parameter for the upper bound on the fraction of
training errors and a lower bound of the fraction of support
vectors

	Kernel coefficient is a gamma parameter, which specifies how
much influence a single data instance has

	Covariance estimator: fits ellipsis to central points with
Mahalanobis distance metric
	Contamination is the proportion of outliers in the data set

	Support fraction specifies the proportion of points included
in the estimate

	Produce a report.

	Click Detect outliers to output the data.

Example

Below, is a simple example of how to use this widget. We used the Iris
data set to detect the outliers. We chose the one class SVM with
non-linear kernel (RBF) method, with Nu set at 20% (less training
errors, more support vectors). Then we observed the outliers in the
Data Table widget, while we sent the inliers to the Scatter
Plot.

[image: ../../_images/Outliers-Example.png]

Preprocess

[image: ../../_images/preprocess.png]

Preprocesses data with selected methods.

Signals

Inputs:

	Data

A data set.

Outputs:

	Preprocessor

A preprocessing method.

	Preprocessed Data

Data preprocessed with selected methods.

Description

Preprocessing is crucial for achieving better-quality analysis results.
The Preprocess widget offers five preprocessing methods to improve
data quality. In this widget, you can immediately discretize continuous
values or continuize discrete ones, impute missing values, select
relevant features or center and scale them. Basically, this widget
combines four separate widgets for simpler processing.

[image: ../../_images/preprocess-stamped.png]

	List of preprocessors. You drag the preprocessors you wish to use to the right side of the widget.

	Discretization of continuous values

	Continuization of discrete values

	Impute missing values or remove them.

	Select the most relevant features by information gain, gain ratio,
Gini index.

	Select random features

	Normalize features

	Randomize

	When the box is ticked (Send Automatically), the widget will
communicate changes automatically. Alternatively, click Send.

	Produce a report.

Example

In the example below, we have used the adult data set and preprocessed the
data. We continuized discrete values (age, education and marital
status...) as one attribute per value, we imputed missing values
(replacing ? with average values), selected 10 most relevant attributes
by Information gain, centered them by mean and scaled by span. We
can observe the changes in the Data Table and compare it to the
non-processed data.

[image: ../../_images/Preprocess-Example.png]

Purge Domain

[image: ../../_images/purge-domain.png]

Removes unused attribute values and useless attributes, sorts the
remaining values.

Signals

Inputs:

	Data

A data set.

Outputs:

	Data

A filtered data set

Description

Definitions of nominal attributes sometimes contain values which don’t
appear in the data. Even if this does not happen in the original data,
filtering the data, selecting examplary subsets and alike can remove all
examples for which the attribute has some particular value. Such values
clutter data presentation, especially various visualizations, and should
be removed.

After purging an attribute, it may become single-valued or, in extreme
case, have no values at all (if the value of this attribute was
undefined for all examples). In such cases, the attribute can be
removed.

A different issue is the order of attribute values: if the data is read
from a file in a format in which values are not declared in advance, they
are sorted “in order of appearance”. Sometimes we would prefer to have
them sorted alphabetically.

[image: ../../_images/PurgeDomain-stamped.png]

	Purge attributes.

	Purge classes.

	Purge meta attributes.

	Information on the filtering process

	Produce a report.

	If Apply automatically is ticked, the widget will output data at
each change of widget settings.

Such purification is done by the widget Purge Domain. Ordinary
attributes and class attributes are treated separately. For each, we can
decide if we want the values sorted or not. Next, we may allow the
widget to remove attributes with less than two values or remove the
class attribute if there are less than two classes. Finally, we can
instruct the widget to check which values of attributes actually appear
in the data and remove the unused values. The widget cannot remove
values if it is not allowed to remove the attributes, since having
attributes without values makes no sense.

The new, reduced attributes get the prefix “R”, which distinguishes them
from the original ones. The values of new attributes can be computed from
the old ones, but not the other way around. This means that if you construct a
classifier from the new attributes, you can use it to classify the
examples described by the original attributes. But not the opposite:
constructing a classifier from the old attributes and using it on examples
described by the reduced ones won’t work. Fortunately, the latter is
seldom the case. In a typical setup, one would explore the data,
visualize it, filter it, purify it… and then test the final model on the
original data.

Example

The Purge Domain widget would typically appear after data filtering, for
instance when selecting a subset of visualized examples.

In the above schema, we play with the adult.tab data set: we visualize
it and select a portion of the data, which contains only four out of the
five original classes. To get rid of the empty class, we put the data
through Purge Domain before going on to the Box Plot widget. The
latter shows only the four classes which are in the Purge Data
output. To see the effect of data purification, uncheck Remove unused
class variable values and observe the effect this has on Box Plot.

[image: ../../_images/PurgeDomain-example.png]

Rank

[image: ../../_images/rank.png]

Ranking of attributes in classification or regression data sets.

Signals

Inputs:

	Data

An input data set.

Outputs:

	Reduced Data

A data set whith selected attributes.

Description

The Rank widget considers class-labeled data sets (classification or
regression) and scores the attributes according to their correlation
with the class.

[image: ../../_images/Rank-stamped.png]

	Select attributes from the data table.

	Data table with attributes (rows) and their scores by different
scoring methods (columns)

	Produce a report.

	If ‘Send Automatically‘ is ticked, the widget automatically
communicates changes to other widgets.

Scoring methods

	Information Gain: the expected amount of information (reduction of entropy)

	Gain Ratio [https://en.wikipedia.org/wiki/Information_gain_ratio]: a ratio of the information gain and the attribute’s intrinsic information, which reduces the bias towards multivalued features that occurs in information gain

	Gini [https://en.wikipedia.org/wiki/Gini_coefficient]: the inequality among values of a frequency distribution

	ANOVA [https://en.wikipedia.org/wiki/One-way_analysis_of_variance]: the difference between average vaules of the feature in different classes

	Chi2 [https://en.wikipedia.org/wiki/Chi-squared_distribution]: dependence between the feature and the class as measure by the chi-square statistice

	ReliefF [https://en.wikipedia.org/wiki/Relief_(feature_selection)]: the ability of an attribute to distinguish between classes on similar data instances

	FCBF (Fast Correlation Based Filter) [https://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf]: entropy-based measure, which also identifies redundancy due to pairwise correlations between features

Example: Attribute Ranking and Selection

Below, we have used the Rank widget immediately after the File
widget to reduce the set of data attributes and include only the most
informative ones:

[image: ../../_images/Rank-Select-Schema.png]

Notice how the widget outputs a data set that includes only the
best-scored attributes:

[image: ../../_images/Rank-Select-Widgets.png]

Example: Feature Subset Selection for Machine Learning

What follows is a bit more complicated example. In the workflow below, we
first split the data into a training set and a test set. In the upper branch, the
training data passes through the Rank widget to select the most
informative attributes, while in the lower branch there is no feature
selection. Both feature selected and original data sets are passed to
their own Test & Score widgets, which develop a Naive Bayes
classifier and score it on a test set.

[image: ../../_images/Rank-and-Test.png]

For data sets with many features, a naive Bayesian classifier feature
selection, as shown above, would often yield a better predictive
accuracy.

Color

[image: ../../_images/color.png]

Set color legend for variables.

Signals

Inputs:

	Data

An input data set.

Outputs:

	Data

A data set with a new color legend.

Description

The Color widget enables you to set the color legend in your visualizations
according to your own preferences. This option provides you with the tools for
emphasizing your results and offers a great variety of color options for presenting your data. It can be combined with most visualizations widgets.

[image: ../../_images/Color-stamped.png]

	A list of discrete variables. You can set the color of each variable by double-clicking on it and opening the Color palette or the Select color window. The widget also enables text-editing. By clicking on a variable, you can change its name.

	A list of continuous variables. You can customize the color gradients by double-clicking on them. The widget also enables text-editing. By clicking on a variable, you can change its name. If you hover over the right side side of the gradient, Copy to all appears. You can then apply your customized color gradient to all variables.

	Produce a report.

	Apply changes. If Apply automatically is ticked, changes will be communicated automatically. Alternatively, just click Apply.

Discrete variables

[image: ../../_images/Color-palette-discrete-stamped.png]

	Choose a desired color from the palette of basic colors.

	Move the cursor to choose a custom color from the color palette.

	Choose a custom color from your previously saved color choices.

	Specify the custom color by:

	entering the red, green, and blue components of the color as values between 0 (darkest) and 255 (brightest)

	entering the hue, saturation and luminescence components of the color as values in the range 0 to 255

	Add the created color to your custom colors.

	Click OK to save your choices or Cancel to exit the the color palette.

Numeric variables

[image: ../../_images/Color-palette-numeric-stamped.png]

	Choose a gradient from your saved profiles. The default profile is already set.

	The gradient palette

	Select the left side of the gradient. Double clicking the color opens the Select Color window.

	Select the right side of the gradient. Double clicking the color opens the Select Color window.

	Pass through black.

	Click OK to save your choices or Cancel to exit the color palette.

Example

We chose to work with the Iris data set. We opened the color palette and selected three new colors for the three types of Irises. Then we opened the Scatter Plot widget and viewed the changes made to the scatter plot.

[image: ../../_images/Color-Example-1.png]

For our second example, we wished to demonstrate the use of the Color widget with continuous variables. We put different types of Irises on the x axis and petal length on the y axis. We created a new color gradient and named it greed (green + red).
In order to show that sepal length is not a deciding factor in differentiating between different types of Irises, we chose to color the points according to sepal width.

[image: ../../_images/Color-Example-2.png]

Box Plot

[image: ../../_images/box-plot.png]

Shows distribution of attribute values.

Signals

Inputs:

	Data

An input data set

Outputs:

	(None)

Description

The Box Plot widget shows the distributions of attribute values. It is a good
practice to check any new data with this widget to quickly discover any
anomalies, such as duplicated values (e.g. gray and grey), outliers, and
alike.

[image: ../../_images/BoxPlot-Continuous-stamped.png]

	Select the variable you want to see plotted.

	Choose Grouping to see box plots [https://en.wikipedia.org/wiki/Box_plot] displayed by class.

	When instances are grouped by class, you can change the display mode.
Annotated boxes will display the end values, the mean and the median,
while compare medians and compare means will, naturally, compare the
selected value between class groups.

[image: ../../_images/BoxPlot-Continuous-small.png]

For continuous attributes the widget displays:

	The mean (the dark blue vertical line)

	Border values for the standard deviation of the mean [https://en.wikipedia.org/wiki/Standard_deviation#Standard_deviation_of_the_mean]. The blue highlighted area is the entire standard deviation of the mean.

	The median (yellow vertical line). The thin blue line represents the
area between the first (25%) and the third (75%) quantile, while the
thin dotted line represents the entire range of values (from the
lowest to the highest value in the data set for the selected
parameter).

	Save image.

	Produce a report.

For discrete attributes, the bars represent the number of instances with
each particular attribute value. The plot shows the number of different
animal types in the Zoo data set: there are 41 mammals, 13 fish, 20
birds and so on.

[image: ../../_images/BoxPlot-Discrete.png]

Example

The Box Plot widget is most commonly used immediately after the File widget
to observe the statistical properties of a data set. It is also useful for
finding the properties of a specific data set, for instance a set of
instances manually defined in another widget (e.g. Scatterplot) or
instances belonging to some cluster or a classification tree node, as
shown in the schema below.

[image: ../../_images/box-plot-example1.png]

[image: ../../_images/box-plot-example2.png]

Distributions

[image: ../../_images/distributions.png]

Displays value distributions for a single attribute.

Signals

Inputs:

	Data

An input data set.

Outputs:

	(None)

Description

The Distributions widget displays the value distribution [https://en.wikipedia.org/wiki/Frequency_distribution]
of discrete or continuous attributes. If the data contains a class
variable, distributions may be conditioned on the class.

For discrete attributes, the graph displayed by the widget shows how
many times (e.g., in how many instances) each attribute value appears in
the data. If the data contains a class variable, class distributions for
each of the attribute values will be displayed as well (like in the
snapshot below). In order to create this graph, we used the Zoo data set.

[image: ../../_images/Distributions-Disc-stamped.png]

	A list of variables for distributions display

	If Bin continuous variables is ticked, the widget will discretize
continuous variables by assigning them to intervals. The number of
intervals is set by precision scale. Alternatively, you can set
smoothness for the distribution curves of continuous variables.

	The widget may be requested to display value distributions only for
instances of certain class (Group by). Show relative frequencies
will scale the data by percentage of the data set.

	Show probabilities.

	Save image saves the graph to your computer in a .svg or .png
format.

	Produce a report.

For continuous attributes, the attribute values are displayed as a
function graph. Class probabilities for continuous attributes are
obtained with gaussian kernel density estimation, while the appearance
of the curve is set with the Precision bar (smooth or precise). For the purpose
of this example, we used the Iris data set.

[image: ../../_images/Distributions-Cont.png]

In class-less domains, the bars are displayed in gray. Here we set Bin
continuous variables into 10 bins, which distributes variables into 10
intervals and displays averages of these intervals as histograms (see 2.
above). We used the Housing data set.

[image: ../../_images/Distributions-NoClass.png]

Heat Map

[image: ../../_images/heat-map.png]

Plots a heat map for a pair of attributes.

Signals

Inputs:

	Data

An input data set.

Outputs:

	Selected Data

A subset of instances that the user has manually selected from the map.

Description

Heat map [https://en.wikipedia.org/wiki/Heat_map] is a graphical
method for visualizing attribute values by class in a two-way matrix.
It only works on data sets containing continuous variables.
The values are represented by color: the higher a certain value is, the
darker the represented color. By combining class and attributes on x and
y axes, we see where the attribute values are the strongest and where the
weakest, thus enabling us to find typical features (discrete) or value
range (continuous) for each class.

[image: ../../_images/HeatMap-stamped.png]

	The color scheme legend. Low and High are thresholds for the
color palette (low for attributes with low values and high for
attributes with high values).

	Merge data.

	Sort columns and rows:
- No Sorting (lists attributes as found in the data set)
- Clustering (clusters data by similarity)
- Clustering with ordered leaves (maximizes the sum of similarities of adjacent elements)

	Set what is displayed in the plot in Annotation & Legend.
- If Show legend is ticked, a color chart will be displayed above the map.
- If Stripes with averages is ticked, a new line with attribute averages will be displayed on the left.
- Row Annotations adds annotations to each instance on the right.
- Column Label Positions places column labels in a selected place (None, Top, Bottom, Top and Bottom).

	If Keep aspect ratio is ticked, each value will be displayed with a square (proportionate to the map).

	If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.

	Save image saves the image to your computer in a .svg or .png format.

	Produce a report.

Example

The Heat Map below displays attribute values for the Housing data set.
The aforementioned data set concerns the housing values in the suburbs of Boston.
The first thing we see in the map are the ‘B’ and ‘Tax’ attributes, which are
the only two colored in dark orange. The ‘B’ attribute provides information
on the proportion of blacks by town and the ‘Tax’ attribute informs us about
the full-value property-tax rate per $10,000. In order to get a clearer heat map,
we then use the Select Columns widget and remove
the two attributes from the data set. Then we again feed the data to the Heat map.
The new projection offers additional information.
By removing ‘B’ and ‘Tax’, we can see other deciding factors,
namely ‘Age’ and ‘ZN’. The ‘Age’ attribute provides information
on the proportion of owner-occupied units built prior to 1940
and the ‘ZN’ attribute informs us about the proportion of non-retail business acres per town.

[image: ../../_images/HeatMap-Example1.png]

The Heat Map widget is a nice tool for discovering relevant features in the data.
By removing some of the more pronounced features, we came across new information, which was hiding in the background.

References

Housing Data Set [https://archive.ics.uci.edu/ml/datasets/Housing]

Scatter Plot

[image: ../../_images/scatter-plot.png]

Scatterplot visualization with explorative analysis and intelligent data
visualization enhancements.

Signals

Inputs:

	Data

An input data set.

	Data Subset

A subset of instances from the input data set.

	Features

A list of attributes.

Outputs:

	Selected Data

A subset of instances that the user manually selected from the
scatterplot.

	Unselected Data

All other data (instances not included in the user’s selection).

Description

The Scatterplot widget provides a 2-dimensional scatterplot
visualization for both continuous and discrete-valued attributes. The
data is displayed as a collection of points, each having the value of the
x-axis attribute determining the position on the horizontal axis and the
value of the y-axis attribute determining the position on the vertical axis.
Various properties of the graph, like color, size and shape of the
points, axis titles, maximum point size and jittering can be adjusted on
the left side of the widget. A snapshot below shows the scatterplot of the
Iris data set with the coloring matching of the class attribute.

[image: ../../_images/Scatterplot-Iris-stamped.png]

	Select the x and y attribute. Optimize your projection by using Rank
Projections. This feature scores attribute pairs by average
classification accuracy and returns the top scoring pair with a
simultaneous visualization update. Set
jittering [https://en.wikipedia.org/wiki/Jitter] to prevent the
dots overlapping. If Jitter continuous values is ticked, continuous
instances will be dispersed.

	Set the color of the displayed points (you will get colors for discrete
values and grey-scale points for continuous). Set label, shape and
size to differentiate between points. Set symbol size and opacity for
all data points. Set the desired colors scale.

	Adjust plot properties:
	Show legend displays a legend on the right. Click and drag the legend to move it.

	Show gridlines displays the grid behind the plot.

	Show all data on mouse hover enables information bubbles if the cursor is placed on a dot.

	Show class density colors the graph by class (see the screenshot below).

	Label only selected points allows you to select individual data instances and label them.

	Select, zoom, pan and zoom to fit are the options for exploring the graph.
The manual selection of data instances works as an angular/square
selection tool. Double click to move the projection. Scroll in or out
for zoom.

	If Send automatically is ticked, changes are communicated automatically.
Alternatively, press Send.

	Save Image saves the created image to your computer in a .svg or .png
format.

	Produce a report.

For discrete attributes, jittering circumvents the overlap of points
which have the same value for both axes, and therefore the density of
points in the region corresponds better to the data. As an example, the
scatterplot for the Titanic data set, reporting on the gender of the
passengers and the traveling class is shown below; without jittering,
the scatterplot would display only eight distinct points.

[image: ../../_images/Scatterplot-Titanic.png]

Here is an example of the Scatter Plot widget if the Show class
density box is ticked.

[image: ../../_images/Scatterplot-ClassDensity.png]

Intelligent Data Visualization

If a data set has many attributes, it is impossible to manually scan
through all the pairs to find interesting or useful scatterplots. Orange
implements intelligent data visualization with the Score Plots
option in the widget. The goal of optimization is to find scatterplot
projections where instances are well separated.

To use this method, go to the Score Plots option in the widget, open
the subwindow and press Start Evaluation. The feature will return a
list of attribute pairs by average classification accuracy score.

Below, there is an example demonstrating the utility of ranking. The
first scatterplot projection was set as the default sepal width to sepal
length plot (we used the Iris data set for simplicity). Upon running Score Plots optimization, the scatterplot converted to a much better
projection of petal width to petal length plot.

[image: ../../_images/ScatterPlotExample-Ranking.png]

Explorative Data Analysis

The Scatterplot, as the rest of Orange widgets, supports zooming-in and
out of part of the plot and a manual selection of data instances.
These functions are available in the lower left corner of the widget.
The default tool is Select, which selects data instances within the
chosen rectangular area. Pan enables you to move the scatterplot
around the pane. With Zoom you can zoom in and out of the pane with a
mouse scroll, while Reset zoom resets the visualization to its optimal
size. An example of a simple schema, where we selected data instances
from a rectangular region and sent them to the Data Table widget, is
shown below. Notice that the scatterplot doesn’t show all 52 data
instances, because some data instances overlap (they have the same
values for both attributes used).

[image: ../../_images/ScatterPlotExample-Explorative.png]

Example

The Scatterplot can be combined with any widget that outputs a list of
selected data instances. In the example below, we combine
Classification Tree and Scatterplot to display instances taken
from a chosen classification tree node (clicking on any node of the
classification tree will send a set of selected data instances to the
scatterplot and mark selected instances with filled symbols).

[image: ../../_images/ScatterPlotExample-Classification.png]

Venn Diagram

[image: ../../_images/venn-diagram.png]

Plots a Venn diagram [http://en.wikipedia.org/wiki/Venn_diagram] for
two or more data subsets.

Signals

Inputs:

	Data

An input data set

Outputs:

	Selected Data

A subset of instances that the user has manually selected from the
diagram.

Description

The Venn Diagram widget displays logical relations between data sets. This
projection shows two or more data sets represented by circles of
different colors. The intersections are subsets that belong to more than one
data set. To further analyze or visualize the subset, click on the
intersection.

[image: ../../_images/venn-workflow.png]

[image: ../../_images/venn-identifiers-stamped.png]

	Information on the input data.

	Select the identifiers by which to compare the data.

	Tick Output duplicates if you wish to remove duplicates.

	If Auto commit is on, changes are automatically communicated to
other widgets. Alternatively, click Commit.

	Save Image saves the created image to your computer in a .svg or .png
format.

	Produce a report.

Examples

The easiest way to use the Venn Diagram is to select data subsets and
find matching instances in the visualization. We use the breast-cancer
data set to select two subsets with Select Rows widget - the first
subset is that of breast cancer patients aged between 40 and 49 and the
second is that of patients with a tumor size between 20 and 29. The Venn
Diagram helps us find instances that correspond to both criteria,
which can be found in the intersection of the two circles.

[image: ../../_images/VennDiagram-Example1.png]

The Venn Diagram widget can be also used for exploring different
prediction models. In the following example, we analysed 3 prediction
methods, namely Naive Bayes, SVM Learner and Random Forest Learner, according to their misclassified instances. By selecting
misclassifications in the three Confusion Matrix widgets and sending
them to Venn diagram, we can see all the misclassification instances
visualized per method used. Then we open Venn Diagram and select,
for example, the misclassified instances that were identified by all
three methods (in our case 2). This is represented as an intersection of
all three circles. Click on the intersection to see this two instances
marked in the Scatterplot widget. Try selecting different diagram
sections to see how the scatterplot visualization changes.

[image: ../../_images/VennDiagram-Example2.png]

Linear Projection

[image: ../../_images/linear-projection.png]

A linear projection method with explorative data analysis.

Signals

Inputs:

	Data

An input data set

	Data Subset

A subset of data instances

Outputs:

	Selected Data

A data subset that the user has manually selected in the projection.

Description

This widget displays linear projections [https://en.wikipedia.org/wiki/Projection_(linear_algebra)]
of class-labeled data. Consider, for a start, a projection of the Iris
data set shown below. Notice that it is the sepal width and sepal length
that already separate Iris setosa from the other two, while the petal
length is the attribute best separating Iris versicolor from Iris
virginica.

[image: ../../_images/linear-projection-stamped.png]

	Axes in the projection that are displayed and other available axes.

	Set the color of the displayed dots (you will get colored dots for
discrete values and grey-scale dots for continuous). Set opacity,
shape and size to differentiate between instances.

	Set jittering [https://en.wikipedia.org/wiki/Jitter] to prevent
the dots from overlapping (especially for discrete attributes).

	Select, zoom, pan and zoom to fit options for exploring the
graph. Manual selection of data instances works as a
non-angular/free-hand selection tool. Double click to move the
projection. Scroll in or out for zoom.

	When the box is ticked (Auto commit is on), the widget will
communicate the changes automatically. Alternatively, click Commit.

	Save Image saves the created image to your computer in a .svg or .png
format.

	Produce a report.

Example

The Linear Projection widget works just like other visualization widgets. Below,
we connected it to the File widget to see the set projected on a 2-D
plane. Then we selected the data for further analysis and connected it
to the Data Table widget to see the details of the selected subset.

[image: ../../_images/LinearProjection-example.png]

References

Koren Y., Carmel L. (2003). Visualization of labeled data using linear
transformations. In Proceedings of IEEE Information Visualization 2003,
(InfoVis‘03). Available
here [http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3DDF0DB68D8AB9949820A19B0344C1F3?doi=10.1.1.13.8657&rep=rep1&type=pdf].

Boulesteix A.-L., Strimmer K. (2006). Partial least squares: a versatile
tool for the analysis of high-dimensional genomic data. Briefings in
Bioinformatics, 8(1), 32-44. Abstract
here [http://bib.oxfordjournals.org/content/8/1/32.abstract].

Scatter Map

[image: ../../_images/scatter-map.png]

Plots a scatter map for a pair of continuous attributes.

Signals

Inputs:

	Data

An input data set

Outputs:

	None

Description

A Scatter map [https://en.wikipedia.org/wiki/Scatter_plot] is a
graphical method for visualizing frequencies in a two-way matrix by
color. The higher the occurrence of a certain value, the darker the
represented color. By combining two values on x and y axes, we see where
the attribute combination is the strongest and where the weakest, thus
enabling the user to find strong correlations or representative
instances.

[image: ../../_images/ScatterMap2-stamped.png]

	Select the x and y attribute to be plotted.

	Color the plot by attribute. You can also select which attribute
instances you wish to see in the visualization by clicking on them.
At the bottom, you can select the color scale strength
(linear [https://en.wikipedia.org/wiki/Linear_function_(calculus)],
square root [https://en.wikipedia.org/wiki/Square_root] or
logarithmic [https://en.wikipedia.org/wiki/Logarithm#Logarithmic_scale]).

	Sampling is enabled only when the widget is connected to the SQL
Table widget. You can set the sampling time for large data to speed
up the analysis. Sharpen works for all data types and it will
resize (sharpen) the squares in the plot.

	Save Image saves the created image to your computer in a .svg or .png
format.

	Produce a report.

Example

Below, you can see an example workflow for the Scatter Map widget. Notice
that the widget only works with continuous data, so you need to first
continuize the data attributes you want to visualize. The Scatter map below
displays two attributes from the Iris data set, namely the petal width
and petal length. Here, we can see the distribution of width and length
values per Iris type. You can see that the variety Iris setosa is
distinctly separated from the other two varieties by petal width and
length and that the most typical values for these attributes are around
0.2 for petal width and between 1.4 and 1.7 for petal length. This shows
that petal width and length are good attributes for telling Iris setosa
apart from the other two varieties.

[image: ../../_images/ScatterMap-Example.png]

Sieve Diagram

[image: ../../_images/sieve-diagram.png]

Plots a sieve diagram for a pair of attributes.

Signals

Inputs:

	Data

An input data set

Outputs:

	None

Description

A Sieve diagram is a graphical method for visualizing frequencies in a two-way contingency table and comparing them to expected frequencies [http://cnx.org/contents/d396c4ad-2fd7-47cd-be84-152b44880feb@2/What-is-an-expected-frequency] under assumption of independence. It was proposed by
Riedwyl and Schüpbach in a technical report in 1983 and later called a
parquet diagram (Riedwyl and Schüpbach, 1994). In this display, the area
of each rectangle is proportional to the expected frequency, while the
observed frequency is shown by the number of squares in each rectangle.
The difference between observed and expected frequency (proportional to
the standard Pearson residual) appears as the density of shading, using
color to indicate whether the deviation from independence is positive
(blue) or negative (red).

[image: ../../_images/SieveDiagram-stamped.png]

	Select the attributes you want to display in the sieve plot.

	Score combinations enables you to fin the best possible combination of attributes.

	Save Image saves the created image to your computer in a .svg or .png
format.

	Produce a report.

The snapshot below shows a sieve diagram for the Titanic data set and has the
attributes sex and survived (the latter is a class attribute in this
data set). The plot shows that the two variables are highly associated,
as there are substantial differences between observed and expected
frequencies in all of the four quadrants. For example, and as highlighted
in the balloon, the chance for surviving the accident was much higher for
female passengers than expected (0.06 vs. 0.15).

[image: ../../_images/SieveDiagram-Titanic.png]

Pairs of attributes with interesting associations have a strong shading,
such as the diagram shown in the above snapshot. For contrast, a sieve
diagram of the least interesting pair (age vs. survival) is shown below.

[image: ../../_images/SieveDiagram-Titanic-age-survived.png]

Example

Below, we see a simple schema using the Titanic data set, where we use the
Rank widget to select the best attributes (the ones with the highest
information gain, gain ratio or gini index) and feed them into the Sieve
Diagram. This displays the sieve plot for the two best attributes,
which in our case are sex and status. We see that the survival rate on the
Titanic was very high for women of the first class and very low for
female crew members.

[image: ../../_images/SieveDiagram-Example2.PNG]

The Sieve Diagram also features the Score Combinations option, which makes the ranking of attributes even easier.

[image: ../../_images/SieveDiagram-Example1.PNG]

References

Riedwyl, H., and Schüpbach, M. (1994). Parquet diagram to plot
contingency tables. In Softstat ‘93: Advances in Statistical Software,
F. Faulbaum (Ed.). New York: Gustav Fischer, 293-299.

Pythagorean Tree

[image: ../../_images/pythagorean-tree.png]

Pythagorean tree visualisation for classification or regression trees.

Signals

Inputs:

	Tree

A classification or regression tree model.

	Selected Data

A subset of instances that the user has manually selected from the Pythagorean tree.

Description

Pythagorean Trees are plane fractals that can be used to depict general tree hierarchies as presented in an article by Fabian Beck and co-authors [http://publications.fbeck.com/ivapp14-pythagoras.pdf]. In our case, they are used for visualizing and exploring tree models, such as
Classification Tree.

[image: ../../_images/Pythagorean-Tree1-stamped.png]

	Information on the input tree model.

	Visualization parameters:

	Depth: set the depth of displayed trees.

	Target class (for classification trees): the intensity of the color for nodes of the tree will correspond to the probability of the target class. If None is selected, the color of the node will denote the most probable class.

	Node color (for regression trees): node colors can correspond to mean or standard deviation of class value of the training data instances in the node.

	Size: define a method to compute the size of the square representing the node. Normal will keep node sizes correspond to the size of training data subset in the node. Square root and Logarithmic are the respective transformations of the node size.

	Log scale factor is only enabled when logarithmic transformation is selected. You can set the log factor between 1 and 10.

	Plot properties:

	Enable tooltips: display node information upon hovering.

	Show legend: shows color legend for the plot.

	
	Reporting:

	
	Save Image: save the visualization to a SVG or PNG file.

	Report: add visualization to the report.

Pythagorean Tree can visualize both classification and regression trees. Below is an example for regression tree. The only difference between the two is that regression tree doesn’t enable coloring by class, but can color by class mean or standard deviation.

[image: ../../_images/Pythagorean-Tree1-continuous.png]

Example

The workflow from the screenshot below demonstrates the difference between
Classification Tree Viewer and Pythagorean Tree. They can both visualize Classification Tree, but Pythagorean visualization takes less space and is more compact, even for a small
Iris flower [https://en.wikipedia.org/wiki/Iris_flower_data_set]
data set. For both visualization widgets, we have hidden the control area on the left by clicking on the splitter between control and visualization area.

[image: ../../_images/Pythagorean-Tree-comparison.png]

Pythagorean Tree is interactive: click on any of the nodes (squares) to select training data instances that were associated with that node. The following workflow explores these feature.

[image: ../../_images/Pythagorean-Tree-scatterplot-workflow.png]

The selected data instances are shown as a subset in the Scatter Plot, sent to the Data Table and examined in the Box Plot. We have used brown-selected data set in this example. The tree and scatter plot are shown below; the selected node in the tree has a black outline.

[image: ../../_images/Pythagorean-Tree-scatterplot.png]

References

Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing Hierarchies [http://publications.fbeck.com/ivapp14-pythagoras.pdf]. In IVAPP ‘14 Proceedings of the 5th International Conference on Information Visualization Theory and Applications, 17-28.

Pythagorean Forest

[image: ../../_images/pythagorean-forest.png]

Pythagorean forest for visualising random forests.

Signals

Inputs:

	Random Forest

Classification / regression tree models as random forest.

Outputs:

	Tree

A selected classification / regression tree model.

Description

Pythagorean Forest shows all learned classification tree models from
Random Forest widget. It displays then as Pythagorean trees, each visualization
pertaining to one randomly constructed tree. In the visualization, you can select
a tree and display it in Pythagorean Tree wigdet. The best tree is the one
with the shortest and most strongly colored branches. This means few attributes
split the branches well.

Widget displays both classification and regression results. Classification requires discrete target variable
in the data set and a Classification Tree widget on the input, while
regression requires a continuous target variable with Regression Tree
on the input.

[image: ../../_images/Pythagorean-Forest-stamped.png]

	Information on the input random forest model.

	Display parameters:

	Depth: set the depth to which the trees are grown.

	Target class: set the target class for coloring the trees. If None is selected, tree will be white. If the input is a classification tree, you can color nodes by their respective class. If the input is a regression tree, the options are Class mean, which will color tree nodes by the class mean value and Standard deviation, which will color then by the standard deviation value of the node.

	Size: set the size of the nodes. Normal will keep nodes the size of the subset in the node. Square root and Logarithmic are the respective transformations of the node size.

	Zoom: allows you to se the size of the tree visualizations.

	Save Image: save the visualization to your computer as a .svg or .png file.
Report: produce a report.

Example

Pythagorean Forest is great for visualizing several built trees at once. In the example
below, we’ve plotted all 10 trees we’ve grown with Random Forest Regression.
When changing the parameters in Random Forest Regression, visualization in Pythagorean Forest will change as well.

Then we’ve selected a tree in the visualization and inspected it further with
Pythagorean Tree widget.

[image: ../../_images/Pythagorean-Forest-Example.png]

References

Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing Hierarchies. In IVAPP ‘14 Proceedings of the 5th International Conference on Information Visualization Theory and Applications, 17-28.

CN2 Rule Viewer

[image: ../../_images/cn2ruleviewer.png]

CN2 Rule Viewer

Signals

Inputs:

	Data

Data set to filter.

	CN2 Rule Classifier

CN2 Rule Classifier, including a list of induced rules.

Outputs:

	Filtered Data

If data is connected, upon active selection (at least one rule is
selected), filtered data is emitted. Output are data instances covered
by all selected rules.

Description

A widget that displays CN2 classification [https://en.wikipedia.org/wiki/CN2_algorithm] rules.
If data is also connected, upon rule selection, one can analyze which instances abide to the conditions.

[image: ../../_images/CN2RuleViewer-stamped.png]

	Original order of induced rules can be restored.

	When rules are many and complex, the view can appear packed. For this
reason, compact view was implemented, which allows a flat
presentation and a cleaner inspection of rules.

	Click Report to bring up a detailed description of the rule
induction algorithm and its parameters, the data domain, and induced
rules.

Additionally, upon selection, rules can be copied to clipboard by
pressing the default system shortcut (ctrl+C, cmd+C).

Examples

In the schema below, the most common use of the widget is presented.
First, the data is read and a CN2 rule classifier is trained. We are using
titanic data set for the rule constrution. The rules
are then viewed using the Rule Viewer. To explore different CN2
algorithms and understand how adjusting parameters influences the
learning process, Rule Viewer should be kept open and in sight, while
setting the CN2 learning algorithm (the presentation will be updated
promptly).

[image: ../../_images/CN2-Viewer-Example1.png]

Selecting a rule outputs filtered data instances. These can be viewed in
a Data Table.

Mosaic Display

[image: ../../_images/mosaic-display.png]

Display data in a mosaic plot.

Signals

Inputs:

	Data

An input data set.

	Data subset

An input data subset.

Outputs:

	Selected data

A subset of instances that the user has manually selected from the plot.

Description

The Mosaic plot is a graphical representation of a two-way frequency table or a contingency table. It is used for visualizing data from two or more qualitative variables and was introduced in 1981 by Hartigan and Kleiner and expanded and refined by Friendly in 1994. It provides the user with the means to more efficiently recognize relationships between different variables. If you wish to read up on the history of Mosaic Display, additional reading is available here [http://www.datavis.ca/papers/moshist.pdf].

[image: ../../_images/Mosaic-Display-stamped.png]

	Select the variables you wish to see plotted.

	Select interior coloring. You can color the interior according to class or you can use the Pearson residual, which is the difference between observed and fitted values, divided by an estimate of the standard deviation of the observed value. If Compare to total is clicked, a comparison is made to all instances.

	Save image saves the created image to your computer in a .svg or .png format.

	Produce a report.

Example

We loaded the titanic data set and connected it to the Mosaic Display widget. We decided to focus on two variables, namely status, sex and survival. We colored the interiors according to Pearson residuals in order to demonstrate the difference between observed and fitted values.

[image: ../../_images/Mosaic-Display-Example.png]

We can see that the survival rates for men and women clearly deviate from the fitted value.

Silhouette Plot

[image: ../../_images/silhouette-plot.png]

A graphical representation of consistency within clusters of data.

Signals

Inputs

	Data

A data set.

Outputs

	Selected Data

A subset of instances that the user has manually selected from the plot.

	Other Data

Remaining data.

Description

The Silhouette Plot widget offers a graphical representation of consistency within clusters of data and provides the user with the means to visually assess cluster quality. The silhouette score is a measure of how similar an object is to its own cluster in comparison to other clusters and is crucial in the creation of a silhoutte plot. The silhouette score close to 1 indicates that the data instance is close to the center of the cluster and instances posessing the silhouette scores close to 0 are on the border between two clusters.

[image: ../../_images/SilhouettePlot-stamped.png]

	Choose the distance metric. You can choose between:
	Euclidean [https://en.wikipedia.org/wiki/Euclidean_distance] (“straight line”, distance between two points)

	Manhattan [https://en.wiktionary.org/wiki/Manhattan_distance] (the sum of absolute differences for all attributes)

	Select the cluster label. You can decide whether to group the instances by cluster or not.

	Display options:
	Choose bar width.

	Annotations: annotate the silhouette plot.

	Save Image saves the created silhouette plot to your computer in a .png or .svg format.

	Produce a report.

	Output:
	Add silhouette scores (good clusters have higher silhoutte scores)

	By clicking Commit, changes are comminicated to the output of the widget. Alternatively, tick the box on the left and changes will be communicated automatically.

	The created silhouette plot.

Example

In the snapshot below, we have decided to use the Silhoutte Plot on the iris data set. We selected data intances with low silhouette scores and passed them on as a subset to the Scatter Plot widget. This visualization only confirms the accuracy of the Silhouette Plot widget, as you can clearly see that the subset lies in the border between two clusters.

[image: ../../_images/SilhouettePlot-Example.png]

If you are interested in other uses of the Silhouette Plot widget, feel free to explore our blog post [http://blog.biolab.si/2016/03/23/all-i-see-is-silhouette/].

Tree Viewer

[image: ../../_images/tree-viewer.png]

A visualization of classification and regression trees.

Signals

Inputs:

	Tree

Classification or regression tree.

Outputs:

	Selected Data

Data from a selected tree node.

	Data

Data set with an additional attribute for selection labels.

Description

This is a versatile widget with 2-D visualization of a classification
tree [https://en.wikipedia.org/wiki/Decision_tree_learning]. The user
can select a node, instructing the widget to output the
data associated with the node, thus enabling explorative data analysis.

[image: ../../_images/tree-viewer-stamped.png]

	Information on the input.

	Display options:
	Zoom in and zoom out

	Select the tree width. The nodes display information bubbles when hovering over them.

	Select the depth of your tree.

	
	Select edge width. The edges between the nodes in the tree graph are drawn based on the selected edge width.

	
	All the edges will be of equal width if Fixed is chosen.

	When Relative to root is selected, the width of the edge will
correspond to the proportion of instances in the corresponding
node with respect to all the instances in the training data. Under
this selection, the edge will get thinner and thinner when
traversing toward the bottom of the tree.

	Relative to parent makes the edge width correspond to the proportion
of instances in the nodes with respect to the instances in their
parent node.

	Define the target class, which you can change based on classes in the data.

	Press Save image to save the created classification tree graph to your computer as a .svg or .png file.

	Produce a report.

Examples

Below, is a simple schema, where we have read the data, constructed the
classification tree and viewed it in our tree viewer. If both the viewer
and Classification Tree are open, any re-run of the tree induction
algorithm will immediately affect the visualization. You can thus use
this combination to explore how the parameters of the induction algorithm
influence the structure of the resulting tree.

[image: ../../_images/tree-viewer-classification.png]

Clicking on any node will output the related data instances. This is
explored in the schema below that shows the subset in the data table and
in the Scatterplot. Make sure that the tree data is
passed as a data subset; this can be done by connecting the
Scatterplot to the File widget first, and connecting it to the
Classification Tree Viewer widget next. Selected data will be displayed as bold dots.

Tree Viewer can also export labelled data. Connect Data Table
to Tree Viewer and set the link between widgets to Data instead of Selected Data. This
will send the entire data to Data Table with an additional meta column labelling selected
data instances (Yes for selected and No for the remaining).

[image: ../../_images/tree-viewer-selection.png]

Finally, Tree Viewer can be used also for visualizing regression trees. Connect
Regression Tree to File widget
using housing.tab data set. Then connect Tree Viewer to Regression Tree. The widget
will display the constructed tree. For visualizing larger trees, especially for regression,
Pythagorean Tree could be a better option.

Geo Map

[image: ../../_images/geomap.png]

Show data points on a world map.

Signals

Inputs:

	Data

An input data set.

	Data Subset

A subset of instances from the input data set.

	Learner

A learning algorithm (classification or regression).

Outputs:

	Selected Data

A subset of instances that the user has manually selected from the map.

	Data

Data set with an appended meta attribute specifying selected and unselected data.

Description

Geo Map widget maps geo-spatial data on a world map. It only works on data sets containing latitude and longitude variables. It also enables class predictions when a learner is provided on the input.

[image: ../../_images/map-stamped.png]

	Define map properties:
- Set the type of map: Black and White, OpenStreetMap [http://www.openstreetmap.org], Topographic, Satellite, Print, Light, Dark, Railyways and Watercolor.
- Set latitude and longitude attributes, if the widget didn’t recognize them automatically. Latitude values should be between -90(S) and 90(N) and longitude values between -180(W) and 180(E).

	Overlay:
- Set the target (class) for predictive mapping. A learner has to be provided on the input. The classifier is trained on latitude and longitude pairs only (i.e. it maps lat/lon pairs to the selected attribute).

	Set point parameters:
- Color: color of data points by attribute values
- Label: label data points with an attribute (available when zoomed in)
- Shape: shape of data points by attribute (available when zoomed in)
- Size: size of data points by attribute
- Opacity: set transparency of data points
- Symbol size: size of data points (small to large)
- Jittering: disperse overlaid data points
- Cluster points: cluster neighboring points with naive greedy clustering [https://github.com/Leaflet/Leaflet.markercluster] (available when less than 600 points are in view)

	If Send Selection Automatically is ticked, changes are communicated automatically. Alternatively, click Send Selection. Save image saves the image to your computer in a .svg or .png format.

Note

To select a subset of points from the map, hold Shift and draw a rectangle around the point you want to output.

Examples

In the first example we will model class predictions on a map. We will use philadelphia-crime data set, load it with File widget and connect it to Map. We can already observe the mapped points in Map. Now, we connect Classification Tree to Map and set target variable to Type. This will display the predicted type of crime for a specific region of Philadelphia city (each region will be colored with a corresponding color code, explained in a legend on the right).

[image: ../../_images/map-classification.png]

The second example uses global-airports.csv [https://raw.githubusercontent.com/ajdapretnar/datasets/master/data/global_airports.csv] data. Say we somehow want to predict the altitude of the area based soley on the latitude and longitude. We again load the data with File widget and connect it to Map. Then we use a regressor, say, KNN and connect it to Map as well. Now we set target to altitude and use Black and White map type. The model guessed the Himalaya, but mades some errors elsewhere.

[image: ../../_images/map-regression.png]

Nomogram

[image: ../../_images/nomogram.png]

Nomograms for visualization of Naive Bayes and Logistic Regression classifiers.

Signals

Inputs:

	Classifier

A trained classifier (Naive Bayes or Logistic regression).

	Data

Data instance.

Description

The Nomogram enables some classifier’s (more precisely Naive Bayes classifier
and Logistic Regression classifier) visual representation. It offers an insight
into the structure of the training data and effects of the attributes on the
class probabilities. Besides visualization of the classifier, the widget offers
interactive support to prediction of class probabilities.
A snapshot below shows the nomogram of the Titanic data set, that models the
probability for a passenger not to survive the disaster of the Titanic.

[image: ../../_images/Nomogram-NaiveBayes.png]

	Select the target class you want to model the probability for.

	By default Scale is set to Log odds ration. For easier understanding and
interpretation option Point scale can be used. The unit is obtained by
re-scaling the log odds so that the maximal absolute log odds ratio in the
nomogram represents 100 points.

	When there are to many attributes in the plotted data set, you can choose to
display only best ranked ones. It is possible to choose from ‘No sorting’,
‘Name’, ‘Absolute importance’, ‘Positive influence’ and ‘Negative influence’
for Naive Bayes representation and from ‘No sorting’, ‘Name’ and
‘Absolute importance’ for Logistic Regression representation.

To represent nomogram for Logistic Regressing classifier Iris data set is used:

[image: ../../_images/Nomogram-LogisticRegression.png]

	The probability for the chosen target class is computed by 1. vs. all principle,
which should be taken in consideration when dealing with multiclass data
(alternating probabilities do not sum to 1). To avoid this inconvenience, you
can choose to normalize probabilities.

	Continuous attributes can be plotted in 2D (only for Logistic Regression).

	Save image.

	Produce a report.

Example

The Nomogram widget should be used immediately after trained classifier widget
(e.g. Naive Bayes. It can also be passed a data
instance using any widget that enables selection
(e.g. Data Table) as shown in the workflow below.

[image: ../../_images/Nomogram-Example.png]

Referring to the Titanic data set once again, 1490 (68%) of passengers on Titanic,
of 2201 in total, died. To make a prediction, the contribution of each attribute
is measured as a point score and the individual point scores are summed to determine
the probability. When the value of the attribute is unknown, its contribution is
0 points. Therefore, not knowing anything about the passenger, the total point
score is 0, and the corresponding probability equals to the unconditional prior.
The nomogram in the example shows the case when we know that the passenger is a
male adult from the first class. The points sum to -0.36, with a corresponding
probability of not surviving of about 53%.

Naive Bayes

[image: ../../_images/naive-bayes.png]

Naive Bayesian Learner

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data

Outputs:

	Learner

A Naive Bayesian [https://en.wikipedia.org/wiki/Naive_Bayes_classifier]
learning algorithm with settings as specified in the dialog. It can be
fed into widgets for testing learners.

	Naive Bayesian Classifier

A trained classifier (a subtype of Classifier). The Naive Bayesian
Classifier signal sends data only if the learning data (signal
Data) is present.

Description

[image: ../../_images/NaiveBayes.png]

This widget has two options: the name under which it will appear in
other widgets and producing a report. The default name is Naive Bayes. When you change it,
you need to press Apply.

Examples

Here, we present two uses of this widget. First, we compare the results of the
Naive Bayesian learner with another learner, the Random Forest.

[image: ../../_images/NaiveBayes-Predictions.png]

The second schema shows the quality of predictions made with Naive
Bayes. We feed the Test&Score widget a Naive Bayes learner and
then send the data to the Confusion Matrix. In this widget, we select the
misclassified instances and show them in Scatterplot. The bold dots
in the scatterplot are the misclassified instances from Naive Bayes.

[image: ../../_images/NaiveBayes-Misclassifications.png]

Logistic Regression

[image: ../../_images/logistic-regression.png]

Logistic Regression Learner

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data

Outputs:

	Learner

A logistic regression learning algorithm with settings as specified in
the dialog.

	Logistic Regression Classifier

A trained classifier (a subtype of Classifier). The Logistic Regression
Classifier sends data only if data input is present.

Description

[image: ../../_images/LogisticRegression-stamped.png]

	A name under which the learner appears in other widgets. The default
name is “Logistic Regression”.

	Regularization [https://en.wikipedia.org/wiki/Regularization_(mathematics)]
type (either
L1 [https://en.wikipedia.org/wiki/Least_squares#Lasso_method] or
L2 [https://en.wikipedia.org/wiki/Tikhonov_regularization]). Set
the cost strength (default is C=1).

	Press Apply to commit changes. If Apply Automatically is ticked, changes will be communicated automatically.

Example

The widget is used just as any other widget for inducing a classifier. This is an example demonstrating the prediction value of logistic regression used on the voting.tab data set. We first use the Logistic Regression learner to provide a LR classifier for the Predictions widget. We want to see the quality of LR prediction model for a person being a republican or a democrat, based on their voting patterns. In Select Columns we choose logistic regression as the feature and party as the class. Then we use the Scatterplot to see which instances were correctly predicted and which were false.

[image: ../../_images/LogisticRegression-example.png]

Classification Tree

[image: ../../_images/classification-tree.png]

Classification Tree

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data.

Outputs:

	Learner

A classification tree learning algorithm with settings as specified in
the dialog.

	Classification Tree

A trained classifier (a subtype of Classifier). The signal Classification
Tree sends data only if the learning data (signal Classified Data)
is present.

Description

Classification Tree is a simple classification algorithm that splits the data into nodes by class purity. It is a precursor to Random Forest. Classification Tree in Orange is designed in-house and can handle both discrete and continuous data sets.

[image: ../../_images/Classification-Tree-stamped.png]

	The learner can be given a name under which it will appear in other
widgets. The default name is “Classification Tree”.

	Tree parameters:
- Induce binary tree: build a binary tree (split into two child nodes)
- Min. number of instances in leaves: if checked, the algorithm will never construct a split which would put less than the specified number of training examples into any of the branches.
- Do not split subsets smaller than: forbids the algorithm to split the nodes with less than the given number of instances.
- Stop when majority reaches [%]: stop splitting the nodes after a specified majority threshold is reached
- Limit the maximal tree depth: limits the depth of the classification tree to the specified number of node levels.

	Produce a report. After changing the settings, you need to click Apply, which will
put the new learner in the output and, if the training examples are
given, construct a new classifier and output it as well. Alternatively, tick the box on the left and changes will be communicated automatically.

Examples

There are two typical uses for this widget. First, you may want to
induce a model and check what it looks like. You do it with the schema
below; to learn more about it, see the documentation on
Tree Viewer.

[image: ../../_images/Classification-Tree-SimpleSchema.png]

The second schema checks the nodes of the built tree.

[image: ../../_images/Classification-Tree-Subset.png]

We used the Iris data set in both examples.

Nearest Neighbors

[image: ../../_images/k-nearest-neighbors.png]

k-Nearest Neighbors (kNN) learner

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data

Outputs:

	Learner

A kNN learning algorithm with settings as specified in the dialog.

	kNN Classifier

Trained classifier (a subtype of Classifier). Signal kNN Classifier
sends data only if the learning data (signal Data is present).

Description

[image: ../../_images/k-NearestNeighbours-stamped.png]

	A name under which it will appear in other widgets. The default name is
“kNN”.

	You can set the Number of neighbors.

	The Metrics you can use are:
	Euclidean [https://en.wikipedia.org/wiki/Euclidean_distance]

	Manhattan [https://en.wikipedia.org/wiki/Taxicab_geometry] (the sum of absolute differences for all attributes)

	Chebyshev [https://en.wikipedia.org/wiki/Chebyshev_distance] (the maximal difference between attributes)

	Mahalanobis [https://en.wikipedia.org/wiki/Mahalanobis_distance] (difference between an attribute and the mean).

	You can assign weight to the contributions of the neighbors. The Weights you can use are:
	Uniform: all points in each neighborhood are weighted equally.

	Distance: closer neighbors of a query point have a greater influence than the neighbors further away.

	Produce a report.

	When you change one or more settings, you need to click Apply, which
will put a new learner in the output and, if the training examples
are given, construct a new classifier and output it as well. Changes can also be applied automatically by clicking the box on the left side of the Apply button.

Example

This schema compares the results of k-Nearest neighbors [https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm] with the default classifier, which always predicts the majority class.

[image: ../../_images/k-NearestNeighbours-Schema.png]

Load Classifier

[image: ../../_images/load-classifier.png]

Loads an existing classifier

Signals

Inputs:

	None

Outputs:

	Classifier

A classifier with selected parameters.

Description

[image: ../../_images/LoadClassifier-stamped.png]

	Choose from a list of previously used classifiers.

	Browse for saved classifiers.

	Reload the selected classifier.

Example

When you want to use a custom-set classifier that you’ve saved before,
open the Load Classifier widget and select the desired file with the
Browse icon. This widget loads the exisiting classifier into
Predictions widget for predicting classes.

[image: ../../_images/LoadClassifier-example.png]

Majority

[image: ../../_images/majority.png]

A learner that returns a majority class in a data set for all
instances.

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data

Outputs:

	Learner

A majority learning algorithm

	Classifier

A trained classifier. In the output only if the learning data (signal
Data) is present.

Description

This learner produces a classifier that always predicts the
majority [https://en.wikipedia.org/wiki/Predictive_modelling#Majority_classifier]
class. When asked for probabilities, it will return the relative
frequencies of the classes in the training set. When there are two or
more majority classes, the classifier chooses the predicted class
randomly, but always returns the same class for a particular example.

The widget is typically used to compare other learning algorithms with
the default classification accuracy.

[image: ../../_images/Majority1-stamped.png]

This widget provides the user with two options:

	The name under which it will appear in other widgets (the default name is “Majority”).

	Producing a report.

If you change the widget’s name, you need to click Apply. Alternatively, tick the box on the left side and changes will be communicated automatically.

Example

In a typical use of this widget, it would be connected to Test&Score
to compare the scores of other learning algorithms (such as
kNN) with the default scores.

[image: ../../_images/Majority-Knn-SchemaLearner.png]

Random Forest Classification

[image: ../../_images/random-forest.png]

Random forest learning algorithm.

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data

Outputs:

	Learner

A random forest learning algorithm with settings as specified in the
dialog.

	Random Forest Classifier

A trained classifier.

Description

Random forest [https://en.wikipedia.org/wiki/Random_forest] is a
classification technique proposed by (Breiman, 2001). When given a set
of class-labeled data, Random Forest builds a set of classification
trees. Each tree is developed from a bootstrap sample from the training
data. When developing individual trees, an arbitrary subset of
attributes is drawn (hence the term “random”), from which the best
attribute for the split is selected. Classification is based on the
majority vote from individually developed tree classifiers in the
forest.

[image: ../../_images/RandomForest-stamped.png]

	Specify the name of the learner or classifier. The default name is
“Random Forest Classification”.

	Specify how many classification trees will be included in the forest
(Number of trees in the forest), and how many attributes will be
arbitrarily drawn for consideration at each node. If the latter is
not specified (option Consider a number... left unchecked), this
number is equal to the square root of the number of attributes in the
data.

	Original Brieman’s proposal is to grow the trees without any
pre-prunning, but since pre-pruning often works quite well and is
faster, the user can set the depth to which the trees will be grown
(Limit depth of individual trees). Another pre-pruning option
is to select the smallest subset that can be split (Do not split subsets smaller than)

	Produce a report.

	Click Apply to communicate the changes to other widgets. Alternatively, tick the box on the left side of the Apply button and changes will be communicated automatically.

Example

The example below shows a comparison schema of a random forest and a tree
learner on a specific data set.

[image: ../../_images/RandomForest-Test.png]

References

Breiman, L. (2001). Random Forests. In Machine Learning, 45(1), 5-32.
Available
here [http://download.springer.com/static/pdf/639/art%253A10.1023%252FA%253A1010933404324.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1010933404324&token2=exp=1434636672~acl=%2Fstatic%2Fpdf%2F639%2Fart%25253A10.1023%25252FA%25253A1010933404324.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1023%252FA%253A1010933404324*~hmac=93fc12faf46899d3cca65e325a946afa897da2a05495736982e04585f9ee6ff3]

Save Classifier

[image: ../../_images/save-classifier.png]

Saves classifier

Signals

Inputs:

	Classifier

A classifier with selected parameters

Outputs:

	None

Description

[image: ../../_images/SaveClassifier-widget-stamped.png]

	Choose from previously saved classifiers.

	Save the created classifier with the Browse icon. Click on the icon and enter
the name of the file. The classifier will be saved to a pickled fie.

[image: ../../_images/SaveClassifier-save.png]

	Save the classifier.

Example

When you want to save a custom-set classifier, select the desired
parameters in the classification widget and connect it to Save
Classifier. Name the classifier; load it later into workflows with
data sets containing compatible attributes.

[image: ../../_images/SaveClassifier-Example.png]

SVM

[image: ../../_images/svm-classification.png]

Support vector machine learning algorithm.

Signals

Inputs:

	Data

A data set.

	Preprocessor

Preprocessed data.

Outputs:

	Learner

A support vector machine learning algorithm with settings as specified in
the dialog.

	Classifier

A trained SVM classifier

	Support Vectors

A subset of data instances from the training set that were used as
support vectors in the trained classifier

Description

Support vector machine [https://en.wikipedia.org/wiki/Support_vector_machine]
(SVM) is a classification technique that separates the attribute space
with a hyperplane, thus maximizing the margin between the instances of
different classes. The technique often yields supreme predictive
performance results. Orange embeds a popular implementation of SVM from the
LIBSVM [https://www.csie.ntu.edu.tw/~cjlin/libsvm/] package. This
widget is its graphical user interface.

[image: ../../_images/SVM-new-stamped.png]

	The learner can be given a name under which it will appear in other
widgets. The default name is “SVM”.

	Classification type with test error settings. C-SVM and v-SVM are
based on different minimization of the error function. On the right
side, you can set test error bounds,
Cost [http://www.quora.com/What-are-C-and-gamma-with-regards-to-a-support-vector-machine]
for C-SVM and Complexity bound for v-SVM.

	The next block of options deals with kernel, a function that
transforms attribute space to a new feature space to fit the
maximum-margin hyperplane, thus allowing the algorithm to create
non-linear classifiers with
Polynomial [https://en.wikipedia.org/wiki/Polynomial_kernel],
RBF [https://en.wikipedia.org/wiki/Radial_basis_function_kernel] and
Sigmoid [http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/#sigmoid]
kernels. Functions that specify the kernel are presented besides
their names, and the constants involved are:
	g for the gamma constant in kernel function (the recommended
value is 1/k, where k is the number of the attributes, but since
there may be no training set given to the widget the default is 0
and the user has to set this option manually),

	c for the constant c0 in the kernel function (default 0), and

	d for the degree of the kernel (default 3).

	Set permitted deviation from the expected value in Numerical
Tolerance. Tick the box next to Iteration Limit to set the maximum
number of iterations permitted.

	Produce a report.

	Click Apply to commit changes. If you tick the box on the left side of the Apply button, changes will be communicated automatically.

Examples

There are two typical uses for this widget, one where the widget is a
classifier and the other where it constructs an object for learning. For
the first one, we have split our data set into two data subsets
(Sample and Remaining Examples). The sample was sent to SVM which
produced a Classifier, which was then used in Predictions widget to
classify the data in Remaning Examples. A similar schema can be used
if the data is already in two separate files; in this
case, two File widgets would be used instead of the File -
Data Sampler combination.

[image: ../../_images/SVM-Predictions.png]

The second schema shows how to use the SVM widget to construct a
learner and compare it in cross-validation with Majority and
k-Nearest Neighbours learners.

[image: ../../_images/SVM-Evaluation.png]

The following schema observes a set of support vectors in a
Scatterplot visualization.

[image: ../../_images/SVM-with-support-vectors.png]

For the above schema to work correctly, the channel between SVM and
Scatterplot widget has to be set appropriately. Set the channel
between these two widgets by double-clicking on the connection between
the widgets and use the settings as displayed in the dialog below.

[image: ../../_images/SVM-support-vectors.png]

References

Introduction to SVM on StatSoft [http://www.statsoft.com/Textbook/Support-Vector-Machines].

CN2 Rule Induction

[image: ../../_images/cn2ruleinduction.png]

CN2 Rule Induction

Signals

Inputs

	Data

Data set.

	Preprocessor

Preprocessed data.

Outputs

	Learner

The CN2 learning algorithm with settings as specified in the dialog.

	CN2 Rule Classifier

Trained classifier (a subtype of Classifier). CN2 Rule Classifier
is only trained and forwarded if learning data is connected.

Description

The CN2 algorithm is a classification technique designed for the
efficient induction of simple, comprehensible rules of form “if cond
then predict class”, even in domains where noise may be present.

[image: ../../_images/CN2RuleInduction-stamped.png]

	Name under which the learner appears in other widgets. The default
name is CN2 Rule Induction.

	Rule ordering:
	Ordered; induce ordered rules (decision list). Rule
conditions are found and the majority class is assigned in the
rule head.

	Unordered; induce unordered rules (rule set). Learn rules for
each class individually, in regard to the original learning
data.

	Covering algorithm:
	Exclusive; after covering a learning instance, remove it from
further consideration.

	Weighted; after covering a learning instance, decrease its
weight (multiplication by gamma) and in-turn decrease its
impact on further iterations of the algorithm.

	Rule search:
	Evaluation measure; select a heuristic to evaluate found
hypotheses:
	Entropy [https://en.wikipedia.org/wiki/Entropy_(information_theory)] (measure of unpredictability of content)

	Laplace Accuracy

	Weighted Relative Accuracy

	Beam width; remember the best rule found thus far and monitor a
fixed number of alternatives (the beam).

	Rule filtering:
	Minimum rule coverage; found rules must cover at least the
minimum required number of covered examples. Unordered rules must
cover this many target class examples.

	Maximum rule length; found rules may combine at most the
maximum allowed number of selectors (conditions).

	Default alpha; significance testing to prune out most
specialised (less frequently applicable) rules in regard to the
initial distribution of classes.

	Parent alpha; significance testing to prune out most
specialised (less frequently applicable) rules in regard to the
parent class distribution.

	Tick ‘Apply Automatically’ to auto-communicate changes to other
widgets and to immediately train the classifier if learning data is
connected. Alternatively, press ‘Apply‘ after configuration.

Examples

Having trained the model, induced rules can be quickly reviewed and
interpreted. Showcased in the example below is the
CN2 Rule Viewer widget .

[image: ../../_images/CN2-Induction-Example1.png]

The second schema tests the accuracy of the algorithm, compares its
performance to the Classification Tree
on a specific data set, and presents a standard use of the widget.

[image: ../../_images/CN2-Induction-Example2.png]

References

	“Separate-and-Conquer Rule Learning”, Johannes Fürnkranz, Artificial
Intelligence Review 13, 3-54, 1999

	“The CN2 Induction Algorithm”, Peter Clark and Tim Niblett,
Machine Learning Journal, 3 (4), pp261-283, (1989)

	“Rule Induction with CN2: Some Recent Improvements”, Peter Clark and
Robin Boswell, Machine Learning - Proceedings of the 5th
European Conference (EWSL-91), pp151-163, 1991

	“Subgroup Discovery with CN2-SD”, Nada Lavrač et al., Journal of
Machine Learning Research 5 (2004), 153-188, 2004

AdaBoost

[image: ../../_images/adaboost-classification.png]

An ensemble meta-algorithm that combines multiple weak learners to build to build more accurate prediction models.

Signals

Inputs:

	Data

A data set.

	Preprocessor

Preprocessed data.

	Learner

A learning algorithm.

Outputs:

	Learner

AdaBoost [https://en.wikipedia.org/wiki/AdaBoost] learning algorithm with settings as specified in the dialog.

	Classifier

Trained classifier (a subtype of Classifier). The AdaBoost classifier signal sends data only if the learning data (signal Data) is present.

Description

The AdaBoost (short for “Adaptive boosting”) widget is a machine-learning algorithm, formulated by Yoav Freund and Robert Schapire [https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf]. It can be used with other learning algorithms to boost their performance. It does so by tweaking the weak learners.

[image: ../../_images/AdaBoost-stamped.png]

	The learner can be given a name under which it will appear in other widgets. The default name is “AdaBoost”.

	Set the parameters. The base estimator is a tree and you can set:
	the Number of estimators

	the Learning rate: it determines to what extent the newly acquired information will override the old information (0 = the agent will not learn anything, 1 = the agent considers only the most recent information)

	the Algorithm: SAMME (updates base estimator’s weights with classification results) or SAMME.R. (updates base estimator’s weight with probability estimates)

	Produce a report.

	Click Apply after changing the settings. That will put the new learner in the output and, if the training examples are given, construct a new classifier and output it as well. To communicate changes automatically tick Apply Automatically.

Examples

For our first example, we loaded the Iris data set and compared the results of two different classification algorithms against the AdaBoost widget.

[image: ../../_images/AdaBoost-Example1.png]

For our second example, we loaded the Iris data set, sent the data instances to several different classifiers (AdaBoost, Classification Tree, Logistic Regression) and output them in the Predictions widget.

[image: ../../_images/AdaBoost-Example2.png]

Linear Regression

[image: ../../_images/linear-regression.png]

Learns a linear function of its input data.

Signals

Inputs:

	Data

A data set

	Preprocessor

A preprocessed data set.

Outputs:

	Learner

A learning algorithm with the supplied parameters

	Predictor

A trained regressor. Signal Predictor sends the output signal only if
signal Data is present.

Description

The Linear Regression widget constructs a learner/predictor that learns
a linear function [https://en.wikipedia.org/wiki/Linear_regression]
from its input data. The model can identify the relationship between a
predictor xi and the response variable y. Additionally,
Lasso [https://en.wikipedia.org/wiki/Least_squares#Lasso_method]
and Ridge [https://en.wikipedia.org/wiki/Tikhonov_regularization]
regularization parameters can be specified. Lasso regression minimizes a
penalized version of the least squares loss function with L1-norm
penalty and Ridge regularization with L2-norm penalty.

[image: ../../_images/linear-regression1-stamped.png]

	The learner/predictor name

	Choose a model to train:
	no regularization

	a Ridge [https://en.wikipedia.org/wiki/Least_squares#Lasso_method]
regularization (L2-norm penalty)

	a Lasso [https://en.wikipedia.org/wiki/Least_squares#Lasso_method]
bound (L1-norm penalty)

	an Elastic net [https://en.wikipedia.org/wiki/Elastic_net_regularization]
regularization

	Produce a report.

	Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.

Example

Below, is a simple workflow showing how to use both the Predictor and
the Learner output. We used the Housing data set. For the Predictor, we input the prediction model
into the Predictions widget and view the results in the Data Table. For the
Learner, we can compare different learners in the Test&Score widget.

[image: ../../_images/linear-regression-example1.png]

Mean Learner

[image: ../../_images/mean-learner.png]

Learns the mean of its input data.

Signals

Inputs:

	Data

A data set.

	Preprocessor

Preprocessed data.

Outputs:

	Learner

A mean learning algorithm.

	Predictor

A trained regressor. Signal Predictor sends the regressor only if signal Data is present.

Description

This is the simplest learner widget for regression problems. It learns
the mean of the class variable and returns a predictor with the same
mean value [https://en.wikipedia.org/wiki/Mean]. Due to its accuracy, this widget can
serve as a baseline for other regression models.

[image: ../../_images/Mean-stamped.png]

	Learner/predictor name

	Produce a report.

	The Apply button commits changes to the output. Alternatively, tick the box on the left side of the button to apply changes automatically.

Examples

In the first example, we use Mean Learner to construct a predictor
and input it into the Data Table. We used the housing data set. In the table, you can see an extra
column Mean Learner with one (mean) value for all instances.

[image: ../../_images/mean-learner-example1.png]

Another way to use Mean Learner is to compare it to other learners
in the Test&Score widget.

[image: ../../_images/mean-learner-example2.png]

Nearest Neighbors

[image: ../../_images/k-nearest-neighbors-regression.png]

Predicts according to the nearest training instances.

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data

Outputs:

	Learner

A learning algorithm with supplied parameters

	Predictor

A trained regressor. Signal Predictor sends the output signal only if
input Data is present.

Description

The Nearest Neighbors widget uses the kNN algorithm [https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm]
that searches for k closest training examples in feature space and uses
their average as prediction.

[image: ../../_images/NearestNeighbors-stamped.png]

	Learner/predictor name

	Set the number of nearest neighbors and the distance parameter
(metric) as regression criteria. Metric can be:
	Euclidean [https://en.wikipedia.org/wiki/Euclidean_distance]
(“straight line”, distance between two points)

	Manhattan [https://en.wikipedia.org/wiki/Taxicab_geometry]
(sum of absolute differences of all attributes)

	Maximal [https://en.wikipedia.org/wiki/Chebyshev_distance]
(greatest of absolute differences between attributes)

	Mahalanobis [https://en.wikipedia.org/wiki/Mahalanobis_distance]
(distance between point and distribution).

	You can assign weight to the contributions of the neighbors. The Weights you can use are:
	Uniform: all points in each neighborhood are weighted equally.

	Distance: closer neighbors of a query point have a greater influence than the neighbors further away.

	Produce a report.

	Press Apply to commit changes.

Example

Below, is a workflow showing how to use both the Predictor and the
Learner output. For the purpose of this example, we used the Housing data set. For the Predictor, we input the prediction model into the
Predictions widget and view the results in the Data Table. For
Learner, we can compare different learners in the Test&Score widget.

[image: ../../_images/NearestNeighbors-example.png]

Stochastic Gradient Descent

[image: ../../_images/stochastic-gradient-descent.png]

Learns a linear classifier by minimizing a chosen loss function.

Signals

Inputs:

	Data

A data set.

	Preprocessor

Preprocessed data.

Outputs:

	Learner

A learning algorithm with supplied parameters

	Predictor

A trained regressor. Signal Predictor sends the output signal only if
input Data is present.

Description

The Stochastic Gradient Descent widget uses stochastic gradient descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent]
that minimizes a chosen loss function with a linear function. The
algorithm approximates a true gradient by considering one sample at a time,
and simultaneously updates the model based on the gradient of the loss
function. This regression returns predictors as minimizers of the sum,
i.e. M-estimators, and is especially useful for large-scale and sparse
data sets.

[image: ../../_images/StochasticGradientDescent-stamped.png]

	Learner/predictor name

	Loss functions:
	Squared Loss [https://en.wikipedia.org/wiki/Mean_squared_error#Regression]
(fitted to ordinary least-squares)

	Huber [https://en.wikipedia.org/wiki/Huber_loss] (switches to
linear loss beyond ε)

	Epsilon insensitive [http://kernelsvm.tripod.com/] (ignores
errors within ε, linear beyond it)

	Squared epsilon insensitive (loss is squared beyond ε-region).

	Regularization norms to prevent overfitting:
	Absolute norm [https://en.wikipedia.org/wiki/Taxicab_geometry] (L1,
leading to sparse solutions)

	Euclidean norm [https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm]
(L2, standard regularizer)

	Elastic net [https://en.wikipedia.org/wiki/Elastic_net_regularization]
(mixing both penalty norms).

	Use the default Inverse scaling [http://users.ics.aalto.fi/jhollmen/dippa/node22.html] for the learning rate to be inversely related to the number of iterations or select Constant for LR to stay the same through all epochs (passes).

	Set the constants for the regression algorithm [https://en.wikipedia.org/wiki/Regression_analysis]:
	Eta0: initial learning rate

	Power t: exponent for inverse scaling learning rate; t is time
step 6, which relates to the number of passes through the training data.

	Produce a report.

	Press Apply to commit changes. Alternatively, tick the box on the left side of the Apply button and changes will be communicated automatically.

Example

Below, we compare three different regression models to see which predict what kind of results. For the purpose of this example, the Housing data set is used. We connect the File widget to Stochastic
Gradient Descent, Linear Regression and Nearest Neighbors
widget and all four to the Predictions widget. Then we use the Data
Table to see what predictions each model makes.

[image: ../../_images/StochasticGradientDescent-example1.png]

SVM Regression

[image: ../../_images/svm-regression.png]

Learns a SVM regression of its input data.

Signals

Inputs:

	Data

A data set.

	Preprocessor

Preprocessed data.

Outputs:

	Learner

A SVM learning algorithm with supplied parameters.

	Predictor

A trained regressor. Signal Predictor sends the regressor only if signal
Data is present.

Description

SVM Regression performs linear regression in a high dimension
feature space using an ε-intensive loss. Its estimation accuracy depends
on a good setting of C, ε and kernel parameters. The widget outputs
class predictions based on a SVM learning algorithm [https://en.wikipedia.org/wiki/Support_vector_machine#Regression].

[image: ../../_images/svm-regression2-stamped.png]

	Learner/predictor name

	Train an ε-SVR or v-SVR model and set test error bounds.

	Set kernel, a function that transforms attribute space to a new
feature space to fit the maximum-margin hyperplane, thus allowing the
algorithm to create non-linear regressors. The first kernel in the
list, however, is a
Linear [https://en.wikipedia.org/wiki/Linear_model] kernel that
does not require this trick, but all the others
(Polynomial [https://en.wikipedia.org/wiki/Polynomial_kernel],
RBF [https://en.wikipedia.org/wiki/Radial_basis_function_kernel]
and
Sigmoid [http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/#sigmoid])
do.
Functions that specify the kernel are presented beside their
names, and the constants involved are:
	g for the gamma constant in kernel function (the recommended
value is 1/k, where k is the number of the attributes, but since
there may be no training set given to the widget the default is 0
and the user has to set this option manually),

	c for the constant c0 in the kernel function (default 0), and

	d for the degree of the kernel (default 3).

	Set permitted deviation from the expected value.

	Produce a report.

	Press Apply to commit changes. Alternatively, tick the box on the left side of the Apply button to communicate changes automatically.

Example

Below, we use two regression models to compare predictions in the
Predictions widget. We used the Housing data set.

[image: ../../_images/svm-regression-example1.png]

Regression Tree

[image: ../../_images/regression-tree.png]

Regression Tree

Signals

Inputs:

	Data

A data set

	Preprocessor

Preprocessed data.

Outputs:

	Learner

A regression tree learning algorithm with settings as specified in the dialog.

	Predictor

Trained regressor.

Description

[image: ../../_images/RegressionTree-stamped.png]

	The learner can be given a name under which it will appear in other widgets. The default name is “Regression Tree”.

	In Feature selection, there is just one option, namely Mean Squared Error [https://en.wikipedia.org/wiki/Mean_squared_error], which measures the average of the squares of the errors or deviations (the difference between the estimator and what is estimated).

	Pruning criteria:
	Minimal instances in leaves; if checked, the algorithm will
never construct a split which would put less than the specified
number of training examples into any of the branches.

	Stop splitting nodes with less instances than forbids the
algorithm to split the nodes with less than the given number of
instances.

	Limit the depth of the regression tree.

	Produce a report.

	After changing the settings, you need to click Apply, which will
put the new learner in the output and, if the training examples are
given, construct a new regressor and output it as well.

Examples

There are two typical uses for this widget. First, you may want to
induce a model and check what it looks like. You do it with the workflow
below. To learn more about it, see the documentation on Regression Tree Viewer.

[image: ../../_images/Regression-Tree-Example1.png]

The second schema checks the accuracy of the algorithm. The selected tree node is presented in the Scatter Plot and we can see that the selected examples exhibit the same features.

[image: ../../_images/Regression-Tree-Example2.png]

Regression Tree Viewer

[image: ../../_images/regression-tree-viewer.png]

Visualization of a regression tree.

Signals

Inputs:

	Regression Tree

Regression tree

Outputs:

	Data

Data from a selected tree node

Description

This is a versatile widget with 2-D visualization of a regression tree [https://en.wikipedia.org/wiki/Decision_tree_learning]. The user can select a node, instructing the widget to output the data associated with the node, thus enabling explorative data analysis.

[image: ../../_images/RegressionTreeViewer-stamped.png]

	Information on the input.

	Set the zoom and define the tree width. The nodes display tooltips when hovering over them.

	The edges between the nodes in the tree graph are drawn based on the selected
edge width.
	All the edges will be of equal width if Fixed is chosen.

	When Relative to root is selected, the width of the edge will correspond to the proportion of instances in the corresponding node with respect to all the instances in the training data. Under this selection, the edge will get thinner and thinner when traversing toward the bottom of the tree.

	Relative to parent makes the edge width correspond to the proportion of instances in the nodes with respect to the instances in their parent node.

	The nodes box defines the target class, which you can change based on
the classes in the data. You can also use Set Colors and color the tree according to the number of instances in a node or impurity. You can also choose to keep the default coloring.

	Press Save Graph to save the regression tree graph as a file to your computer in a .svg or .png format.

	Regression tree.

Examples

Below, is a simple schema, where we have read the data, constructed the regression tree and viewed it in our tree viewer. We loaded the Housing data set and limited the depth of the tree to only 4 levels because of the vastness of the data set. It is worth remembering that if both the viewer and Regression Tree are open, any run of the tree induction algorithm will immediately affect the visualization. You can thus use this combination to explore how parameters of the induction algorithm influence the structure of the resulting tree.

[image: ../../_images/Regression-Tree-Example1.png]

Clicking on any node will output the related data instances. This is explored in the Scatterplot. Make sure that the tree data is passed as a data subset; this can be done by connecting the Scatterplot to the File widget first, and connecting it to the Tree Viewer widget next.

[image: ../../_images/Regression-Tree-Example2.png]

Random Forest Regression

[image: ../../_images/random-forest-regression.png]

Random forest regression

Signals

Inputs:

	Data

Data set

	Preprocessor

Preprocessed data.

Outputs:

	Learner

Random forest learning algorithm with settings as specified in the
dialog.

	Predictor

Trained regressor.

Description

Random forest [https://en.wikipedia.org/wiki/Random_forest] is an ensemble learning method used for classification, regression and other tasks. It was first proposed by Tin Kam Ho and further developed by Leo Breiman and Adele Cutler.
When given a data set, Random Forest builds a set of regression trees. Each tree is developed from a bootstrap sample from the training data. When developing individual trees, an arbitrary subset of attributes is drawn (hence the term “Random”) from which the best attribute for the split is selected.

[image: ../../_images/RandomForestRegression-stamped.png]

	Specify the name of the learner or predictor. The default name is Random Forest Regression.

	Specify how many regression trees will be included in the forest (Number of trees in the forest), and how many attributes will be arbitrarily drawn for consideration at each node. If the latter is not specified (option Number of attributes... left unchecked), this number is equal to the square root of the number of attributes in the data. You can also choose to control the random number generator (Fixed seed for random generator).

	Original Brieman’s proposal is to grow the trees without any pre-prunning, but since pre-pruning often works quite well and is faster, the user can set the depth to which the trees will be grown (Limit depth of individual trees). Another pre-pruning option is stop splitting nodes when the maximal depth is reached (Do not split subsets smaller than).

	Produce a report.

	Click Apply to communicate the changes to other widgets. Alternatively, tick Apply Automatically and changes will be communicated automatically.

Example

The example below compares different learnes, namely Random Forest Regression, Linear Regression and Mean Learner, in the Test&Score widget.

[image: ../../_images/RandomForestRegression-Example1.png]

In order to demonstrate how to use the Predictor output, we used the Housing data set and connected the Random Forest Regression widget with the Predictions widget. The results are displayed in the appended data table.

[image: ../../_images/RandomForestRegression-Example2.png]

PCA

[image: ../../_images/pca.png]

PCA linear transformation of input data.

Signals

Inputs:

	Data

A data set.

Outputs:

	Transformed Data

PCA transformed input data.

	Components

Eigenvectors [https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors].

Description

Principal Component Analysis [https://en.wikipedia.org/wiki/Principal_component_analysis]
(PCA) computes the PCA linear transformation of the input data. It
outputs either a transformed data set with weights of individual
instances or weights of principal components.

[image: ../../_images/PCA-stamped.png]

	Select how many principal components you wish in your output. It is
best to choose as few as possible with variance covered as high as possible. You can also set how much variance you
wish to cover with your principal components.

	You can normalize data to adjust the values to common scale.

	When Apply Automatically is ticked, the widget will automatically
communicate all changes. Alternatively, click Apply.

	Press Save Image if you want to save the created image to your computer.

	Produce a report.

	Principal components graph, where the red (lower) line is the
variance covered per component and the green (upper) line is
cumulative variance covered by components.

The number of components of the transformation can be selected either in
the Components Selection input box or by dragging the vertical cutoff
line in the graph.

Examples

PCA can be used to simplify visualizations of large data sets. Below,
we used the Iris data set to show how we can improve the visualization of
the data set with PCA. The transformed data in the Scatter Plot show a
much clearer distinction between classes than the default settings.

[image: ../../_images/PCAExample.png]

The widget provides two outputs: transformed data and principal
components. Transformed data are weights for individual instances in the
new coordinate system, while components are the system descriptors
(weights for princial components). When fed into the Data Table, we
can see both outputs in numerical form. We used two data tables in order to provide a more clean visualization of the workflow,
but you can also choose to edit the links in such a way that you display the data in just one data table.
You only need to create two links and connect the Transformed data and Components inputs to the Data output.

[image: ../../_images/PCAExample2.png]

Correspondence Analysis

[image: ../../_images/correspondence-analysis.png]

Signals

Inputs:

	Data

A data set.

Outputs:

	None

Description

Correspondence Analysis [https://en.wikipedia.org/wiki/Correspondence_analysis] (CA)
computes the CA linear transformation of the input data. While it is
similar to PCA, CA computes linear transformation on discrete rather
than on continuous data.

[image: ../../_images/CorrespondenceAnalysis-stamped.png]

	Select the variables you want to see plotted.

	Select the component for each axis.

	Inertia [https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia]
values (percentage of independence from transformation, i.e.
variables are in the same dimension).

	Produce a report.

Example

Below, is a simple comparison between the Correspondence Analysis and
Scatter plot widgets on the Titanic data set. While the Scatter plot shows
fairly well which class and sex had a good survival rate and which one
didn’t, Correspondence Analysis can plot several variables in a 2-D
graph, thus making it easy to see the relations between variable values.
It is clear from the graph that “no”, “male” and “crew” are related to
each other. The same goes for “yes”, “female” and “first”.

[image: ../../_images/CorrespondenceAnalysis-Example.png]

Distance Map

[image: ../../_images/distance-map.png]

Visualizes distances between items.

Signals

Inputs:

	Distances

A distance matrix.

Outputs:

	Data

Instances corresponding to the selected elements of the matrix.

	Features

Attributes corresponding to the selected elements of the matrix.

Description

The Distance Map visualizes distances between objects. The visualization
is the same as if we printed out a table of numbers, except that the
numbers are replaced by colored spots.

Distances are most often those between instances (“rows” in the
Distances widget) or attributes (“columns” in Distances
widget). The only suitable input for Distance Map is the Distances
widget. For the output, the user can select a region of the map and the
widget will output the corresponding instances or attributes. Also note
that the Distances widget ignores discrete values and calculates
distances only for continuous data, thus it can only display distance map
for discrete data if you Continuize them first.

The snapshot shows distances between columns in the heart disease
data, where smaller distances are represented with light and larger with
dark orange. The matrix is symmetric and the diagonal is a light shade of orange - no
attribute is different from itself. Symmetricity is always assumed,
while the diagonal may also be non-zero.

[image: ../../_images/DistanceMap-stamped.png]

	Element sorting arranges elements in the map by
	None (lists instances as found in the data set)

	Clustering (clusters data by similarity)

	Clustering with ordered leaves (maximizes the sum of
similarities of adjacent elements)

	Colors
	Colors (select the color palette for your distance map)

	Low and High are thresholds for the color palette (low for
instances or attributes with low distances and high for instances
or attributes with high distances).

	Select Annotations.

	If Send Selected Automatically is on, the data subset is communicated automatically,
otherwise you need to press Send Selected.

	Press Save Image if you want to save the created image to your computer.

	Produce a report.

Normally, a color palette is used to visualize the entire range of
distances appearing in the matrix. This can be changed by setting the
low and high threshold. In this way we ignore the differences in
distances outside this interval and visualize the interesting part of
the distribution.

Below, we visualized the most correlated attributes (distances by
columns) in the heart disease data set by setting the color threshold
for high distances to the minimum. We get a predominantly black square,
where attributes with the lowest distance scores are represented by
a lighter shade of the selected color schema (in our case: orange). Beside the diagonal line, we see that in our example ST by
exercise and major vessels colored are the two attributes closest
together.

[image: ../../_images/DistanceMap-Highlighted.png]

The user can select a region in the map with the usual click-and-drag of
the cursor. When a part of the map is selected, the widget outputs all
items from the selected cells.

Examples

The first workflow shows a very standard use of the Distance Map
widget. We select 70% of the original Iris data as our sample and view
the distances between rows in Distance Map.

[image: ../../_images/DistanceMap-Example1.png]

In the second example, we use the heart disease data again and select a
subset of women only from the Scatter Plot. Then, we visualize
distances between columns in the Distance Map. Since the subset also contains some discrete data, the Distances widget warns us it will
ignore the discrete features, thus we will see only continuous
instances/attributes in the map.

[image: ../../_images/DistanceMap-Example.png]

Distances

[image: ../../_images/distances.png]

Computes distances between rows/columns in a data set.

Signals

Inputs:

	Data

A data set

Outputs:

	Distances

A distance matrix

Description

The Distances widget computes distances between rows or
columns in a data set.

[image: ../../_images/Distances-stamped.png]

	Choose whether to measure distances between rows or columns.

	Choose the Distance Metric:

	Euclidean [https://en.wikipedia.org/wiki/Euclidean_distance]
(“straight line”, distance between two points)

	Manhattan [https://en.wiktionary.org/wiki/Manhattan_distance]
(the sum of absolute differences for all attributes)

	Cosine [https://en.wikipedia.org/wiki/Cosine_similarity]
(the cosine of the angle between two vectors of an inner product
space)

	Jaccard [https://en.wikipedia.org/wiki/Jaccard_index] (the
size of the intersection divided by the size of the union of the
sample sets)

	Spearman [https://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient]
(linear correlation between the rank of the values, remapped as a
distance in a [0, 1] interval)

	Spearman
absolute [https://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient]
(linear correlation between the rank of the absolute values,
remapped as a distance in a [0, 1] interval)

	Pearson [https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient]
(linear correlation between the values, remapped as a distance in
a [0, 1] interval)

	Pearson absolute [https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient]
(linear correlation between the absolute values, remapped as a
distance in a [0, 1] interval)

In case of missing values, the widget automatically imputes the average
value of the row or the column.

Since the widget cannot compute distances between discrete and
continuous attributes, it only uses continuous attributes and ignores
the discrete ones. If you want to use discrete attributes, continuize
them with the Continuize widget first.

	Produce a report.

	Tick Apply Automatically to automatically commit changes to other widgets. Alternatively, press ‘Apply‘.

Example

This widget needs to be connected to another widget to display results,
for instance to Distance Map to visualize distances, Hierarchical
Clustering to cluster the attributes, or MDS to visualize the
distances in a plane.

[image: ../../_images/DistancesExample.png]

Distance Matrix

[image: ../../_images/distance-matrix.png]

Visualizes distance measures in a distance matrix.

Signals

Inputs:

	Distances

A distance matrix.

Outputs:

	Distances

A distance matrix.

	Table

Distance measures in a distance matrix.

Description

The Distance Matrix widget creates a distance matrix, which is a two-dimensional array containing the distances, taken pairwise, between the elements of a set. The number of elements in the data set defines the size of the matrix. Data matrices are essential for hierarchical clustering and they are extremely useful in bioinformatics as well, where they are used to represent protein structures in a coordinate-independent manner.

[image: ../../_images/DistanceMatrix-stamped.png]

	Elements in the data set and the distances between them

	Label the table. The options are: none, enumeration, according to variables.

	Produce a report.

	Click Send to communicate changes to other widgets. Alternatively, tick the box in front of the Send button and changes will be communicated automatically (Send Automatically).

The only two suitable inputs for Distance Matrix are the Distances
widget and the Distance Transformation widget. The output of the widget is a data table containing the distance matrix. The user can decide how to label the table and the distance matrix (or instances in the distance matrix) can then be visualized or displayed in a separate data table.

Example

The example below displays a very standard use of the Distance Matrix
widget. We compute the distances between rows in the sample from the Iris data set and output them in the Distance Matrix. It comes as no surprise that Iris Virginica and Iris Setosa are the furthest apart.

[image: ../../_images/DistanceMatrix-Example.png]

Distance Transformation

[image: ../../_images/distance-transformation.png]

Transforms distances in a data set.

Signals

Inputs:

	Distances

A distance matrix

Outputs:

	Distances

A distance matrix

Description

The Distances Transformation widget is used for the normalization and inversion of distance matrices. The normalization of data is necessary to bring all the variables into proportion with one another.

[image: ../../_images/DistanceTransformation-stamped.png]

	Choose the type of Normalization [https://en.wikipedia.org/wiki/Normalization_(statistics)]:
	No normalization

	To interval [0, 1]

	To interval [-1, 1]

	Sigmoid function [https://en.wikipedia.org/wiki/Sigmoid_function]: 1/(1+exp(-X))

	Choose the type of Inversion:
	No inversion

	-X

	1 - X

	max(X) - X

	1/X

	Produce a report.

	After changing the settings, you need to click Apply to commit changes to other widgets. Alternatively, tick Apply automatically.

Example

In the snapshot below, you can see how transformation affects the distance matrix. We loaded the Iris data set and calculated the distances between rows with the help of the Distances widget. In order to demonstrate how Distance Transformation affects the Distance Matrix, we created the worflow below and compared the transformed distance matrix with the “original” one.

[image: ../../_images/DistanceTransformation-Example.png]

Distance File

[image: ../../_images/distance-file.png]

Loads an existing distance file.

Signals

Inputs:

	None

Outputs:

	Distance File

A distance matrix.

Description

[image: ../../_images/DistanceFile-stamped.png]

	Choose from a list of previously saved distance files.

	Browse for saved distance files.

	Reload the selected distance file.

	Information about the distance file (number of points, labelled/unlabelled)

	Browse documentation data sets.

	Produce a report.

Example

When you want to use a custom-set distance file that you’ve saved before, open the Distance File widget and select the desired file with the Browse icon. This widget loads the existing distance file. In the snapshot below, we loaded the transformed Iris distance matrix from the Save Distance Matrix example. We displayed the transformed data matrix in the Distance Map widget. We also decided to display a distance map of the original Iris data set for comparison.

[image: ../../_images/DistanceFile-Example.png]

Save Distance Matrix

[image: ../../_images/save-distance-matrix.png]

Saves a distance matrix.

Signals

Inputs:

	Distances

A distance matrix.

Outputs:

	None

Description

[image: ../../_images/SaveDistanceMatrix-stamped.png]

	By clicking Save, you choose from previously saved distance matrices. Alternatively, tick the box on the left side of the Save button and changes will be communicated automatically.

	By clicking Save as, you save the distance matrix to your computer, you only need to enter the name of the file and click Save. The distance matrix will be saved as type .dst.

Example

In the snapshot below, we used the Distance Transformation widget to transform the distances in the Iris data set. We then chose to save the transformed version to our computer, so we could use it later on. We decided to output all data instances. You can choose to output just a minor subset of the data matrix. Pairs are marked automatically.
If you wish to know what happened to our changed file, go here

[image: ../../_images/SaveDistanceMatrix-Example.png]

Hierarchical Clustering

[image: ../../_images/hierarchical-clustering.png]

Groups items using a hierarchical clustering algorithm.

Signals

Inputs:

	Distances

A distance matrix

Outputs:

	Selected Data

A data subset

	Other Data

Remaining data

Description

The widget computes hierarchical clustering [https://en.wikipedia.org/wiki/Hierarchical_clustering] of
arbitrary types of objects from a matrix of distances and shows a
corresponding dendrogram [https://en.wikipedia.org/wiki/Dendrogram].

[image: ../../_images/HierarchicalClustering-stamped.png]

	The widget supports four ways of measuring distances between
clusters:
	Single linkage computes the distance between the closest
elements of the two clusters

	Average linkage computes the average distance between elements
of the two clusters

	Weighted linkage uses the
WPGMA [http://research.amnh.org/~siddall/methods/day1.html]
method

	Complete linkage computes the distance between the clusters’ most
distant elements

	Labels of nodes in the dendrogram can be chosen in the Annotation
box.

	Huge dendrograms can be pruned in the Pruning box by selecting the
maximum depth of the dendrogram. This only affects the display, not
the actual clustering.

	The widget offers three different selection methods:
	Manual (Clicking inside the dendrogram will select a cluster.
Multiple clusters can be selected by holding Ctrl/Cmd. Each
selected cluster is shown in a different color and is treated as a
separate cluster in the output.)

	Height ratio (Clicking on the bottom or top ruler of the
dendrogram places a cutoff line in the graph. Items to the right
of the line are selected.)

	Top N (Selects the number of top nodes.)

	Use Zoom and scroll to zoom in or out.

	If the items being clustered are instances, they can be added a
cluster index (Append cluster IDs). The ID can appear as an
ordinary Attribute, Class attribute or a Meta attribute.
In the second case, if the data already has a class attribute, the
original class is placed among meta attributes.

	The data can be automatically output on any change (Auto send is
on) or, if the box isn’t ticked, by pushing Send Data.

	Clicking this button produces an image that can be saved.

	Produce a report.

Examples

The workflow below shows the output of Hierarchical Clustering for the Iris data set in Data Table widget. We see that if we choose
Append cluster IDs in hierarchical clustering, we can see an
additional column in the Data Table named Cluster. This is a way
to check how hierarchical clustering clustered individual instances.

[image: ../../_images/HierarchicalClustering-Example.png]

In the second example, we loaded the Iris data set again, but this time
we added the Scatter Plot, showing all the instances from the
File widget, while at the same time receiving the selected instances
signal from Hierarchical Clustering. This way we can observe the
position of the selected cluster(s) in the projection.

[image: ../../_images/HierarchicalClustering-Example2.png]

k-Means

[image: ../../_images/k-means.png]

Groups items using the k-Means clustering algorithm.

Signals

Inputs:

	Data

A data set.

Outputs:

	Data

A data set with cluster index as a class attribute.

Description

The widget applies the k-Means clustering [https://en.wikipedia.org/wiki/K-means_clustering]
algorithm to the data and outputs a new data set in which the cluster
index is used as a class attribute. The original class attribute, if it
exists, is moved to meta attributes. Scores of clustering results for
various k are also shown in the widget.

[image: ../../_images/kMeans-stamped.png]

	Select the number of clusters.

	Fixed: algorithm clusters data in a specified number of
clusters.

	Optimized: widget shows clustering scores for the selected
cluster range.

	Silhouette [https://en.wikipedia.org/wiki/Silhouette_(clustering)]
(contrasts average distance to elements in the same cluster with
the average distance to elements in other clusters)

	Inter-cluster distance (measures distances between clusters,
normally between centroids)

	Distance to
centroids [https://en.wikipedia.org/wiki/Centroid] (measures
distances to the arithmetic means of clusters)

	Select the initialization method (the way the algorithm begins
clustering):

	k-Means++ [https://en.wikipedia.org/wiki/K-means%2B%2B]
(first center is selected randomly, subsequent are chosen from the
remaining points with probability proportioned to squared distance
from the closest center)

	Random initialization (clusters are assigned randomly at first
and then updated with further iterations)

Re-runs (how many times the algorithm is run) and maximal
iterations (the maximum number of iteration within each algorithm
run) can be set manually.

	The widget outputs a new data set with appended cluster information.
Select how to append cluster information (as class, feature or meta
attribute) and name the column.

	If Apply Automatically is ticked, the widget will commit changes
automatically. Alternatively, click Apply.

	Produce a report.

	Check scores of clustering results for various k.

Examples

We are going to explore the widget with the following schema.

[image: ../../_images/K-MeansClustering-Schema.png]

First, we load the Iris data set, divide it into three clusters and
show it in the Data Table, where we can observe which instance went into
which cluster. The interesting parts are the Scatter Plot and
Select Rows.

Since k-Means added the cluster index as a class attribute, the scatter plot
will color the points according to the clusters they are in.

[image: ../../_images/kMeans-Scatterplot.png]

What we are really interested in is how well the clusters induced by the
(unsupervised) clustering algorithm match the actual classes in the
data. We thus take Select Rows widget, in which we can select
individual classes and have the corresponding points marked in the
scatter plot. The match is perfect for setosa, and pretty good for the
other two classes.

[image: ../../_images/K-MeansClustering-Example.png]

You may have noticed that we left the Remove unused
values/attributes and Remove unused classes in Select Rows
unchecked. This is important: if the widget modifies the attributes, it
outputs a list of modified instances and the scatter plot cannot compare
them to the original data.

Perhaps a simpler way to test the match between clusters and the
original classes is to use the Distributions widget.

[image: ../../_images/K-MeansClustering-Schema2.png]

The only (minor) problem here is that this widget only visualizes
normal (and not meta) attributes. We solve this by using
Select Columns: we reinstate the original class Iris as the class
and put the cluster index among the attributes.

The match is perfect for setosa: all instances of setosa are in the
third cluster (blue). 48 versicolors are in the second cluster (red),
while two ended up in the first. For virginicae, 36 are in the first
cluster and 14 in the second.

[image: ../../_images/K-MeansClustering-Example2.png]

MDS

[image: ../../_images/mds.png]

Multidimensional scaling (MDS) projects items onto a plane fitted to
given distances between points.

Signals

Inputs:

	Distances

A distance matrix

	Data

A data set

Outputs:

	Data

A data set with MDS coordinates.

	Data subset

Selected data

Description

Multidimensional scaling [https://en.wikipedia.org/wiki/Multidimensional_scaling] is a
technique which finds a low-dimensional (in our case a two-dimensional)
projection of points, where it tries to fit distances between points as
well as possible. The perfect fit is typically impossible to obtain
since the data is high-dimensional or the distances are not
Euclidean [https://en.wikipedia.org/wiki/Euclidean_distance].

In the input, the widget needs either a data set or a matrix of
distances. When visualizing distances between rows, you can also adjust
the color of the points, change their shape, mark them, and output them
upon selection.

The algorithm iteratively moves the points around in a kind of a
simulation of a physical model: if two points are too close to each
other (or too far away), there is a force pushing them apart (or
together). The change of the point’s position at each time interval
corresponds to the sum of forces acting on it.

[image: ../../_images/MDS-zoo-stamped.png]

	The widget redraws the projection during optimization. Optimization
is run automatically in the beginning and later by pushing Start.
	Max iterations: The optimization stops either when the
projection changes only minimally at the last iteration or when a
maximum number of iterations has been reached.

	Initialization: PCA (Torgerson) positions the initial points
along principal coordinate axes. Random sets the initial points
to a random position and then readjusts them.

	Refresh: Set how often you want to refresh the visualization.
It can be at Every iteration, Every 5/10/25/50 steps or never (None). Setting a lower refresh interval makes
the animation more visually appealing, but can be slow if the
number of points is high.

	Defines how the points are visualized. These options are available only when visalizing distances between rows (selected in the Distances widget).
	Color: Color of points by attribute (gray for continuous,
colored for discrete).

	Shape: Shape of points by attribute (only for discrete).

	Size: Set the size of points (Same size or select an
attribute) or let the size depend on the value of the continuous
attribute the point represents (Stress).

	Label: Discrete attributes can serve as a label.

	Symbol size: Adjust the size of the dots.

	Symbol opacity: Adjust the transparency level of the dots.

	Show similar pairs: Adjust the strength of network lines.

	Jitter: Set jittering [https://en.wikipedia.org/wiki/Jitter] to prevent the dots from overlapping.

	Adjust the graph with Zoom/Select. The arrow enables you to select data instances. The magnifying glass enables zooming, which can be also done by scrolling in and out. The hand allows you to move the graph around. The rectangle readjusts the graph proportionally.

	Select the desired output:
	Original features only (input data set)

	Coordinates only (MDS coordinates)

	Coordinates as features (input data set + MDS coordinates as
regular attributes)

	Coordinates as meta attributes (input data set + MDS
coordinates as meta attributes)

	Sending the instances can be automatic if Send selected automatically is ticked. Alternatively, click Send selected.

	Save Image allows you to save the created image either as .svg or .png
file to your device.

	Produce a report.

The MDS graph performs many of the functions of the Visualizations
widget. It is in many respects similar to the Scatter Plot widget, so we
recommend reading that widget’s description as well.

Example

The above graphs were drawn using the following simple schema. We used the iris.tab data set. Using the
Distances widget we input the distance matrix into the MDS
widget, where we see the Iris data displayed in a 2-dimensional plane.
We can see the appended coordinates in the Data Table widget.

[image: ../../_images/MDS-Example.png]

References

Wickelmaier, F. (2003). An Introduction to MDS. Sound Quality Research
Unit, Aalborg University. Available
here [https://homepages.uni-tuebingen.de/florian.wickelmaier/pubs/Wickelmaier2003SQRU.pdf].

Manifold Learning

[image: ../../_images/manifold-learning.png]

Nonlinear dimensionality reduction.

Signals

Inputs:

	Data

A data set

Outputs:

	Transformed Data

A data set with new, reduced coordinates.

Description

Manifold Learning [https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction] is a
technique which finds a non-linear manifold within the higher-dimensional space. The widget then
outputs new coordinates which correspond to a two-dimensional space. Such data can be later
visualized with Scatter Plot or other visualization widgets.

[image: ../../_images/manifold-learning-stamped.png]

	Method for manifold learning:
- t-SNE [http://scikit-learn.org/stable/modules/manifold.html#t-distributed-stochastic-neighbor-embedding-t-sne]
- MDS [http://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds], see also MDS widget
- Isomap [http://scikit-learn.org/stable/modules/manifold.html#isomap]
- Locally Linear Embedding [http://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding]
- Spectral Embedding [http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding]

	Set parameters for the method:
- t-SNE (distance measures):

	Euclidean distance

	Manhattan

	Chebyshev

	Jaccard

	Mahalanobis

	Cosine

	
	MDS (iterations and initialization):

	
	max interations: maximum number of optimization interations

	initialization: method for initialization of the algorithm (PCA or random)

	
	Isomap:

	
	number of neighbors

	
	Locally Linear Embedding:

	
	
	method:

	
	standard

	modified

	hessian eigenmap [http://scikit-learn.org/stable/modules/manifold.html#hessian-eigenmapping]

	local

	number of neighbors

	max iterations

	
	Spectral Embedding:

	
	
	affinity:

	
	nearest neighbors

	RFB kernel

	Output: the number of reduced features (components).

	If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.

	Produce a report.

Manifold Learning widget produces different embeddings for high-dimensional data.

... figure:: images/collage-manifold.png

From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.

Example

Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing data sets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.

[image: ../../_images/manifold-learning-example.png]

Calibration Plot

[image: ../../_images/calibration-plot.png]

Shows the match between classifiers’ probability predictions and actual
class probabilities.

Signals

Inputs:

	Evaluation Results

Results of testing classification algorithms.

Outputs:

	None

Description

The Calibration Plot [https://en.wikipedia.org/wiki/Calibration_curve] plots class
probabilities against those predicted by the classifier(s).

[image: ../../_images/CalibrationPlot-stamped.png]

	Select the desired target class from the drop down menu.

	Choose which classifiers to plot. The diagonal represents optimal behaviour; the closer the classifier’s curve gets, the more accurate its prediction probabilities are. Thus we would use this widget to see whether a classifier is overly optimistic (gives predominantly positive results) or pesimitistic (gives predominantly negative results).

	If Show rug is enabled, ticks are displayed at the bottom and the top of the graph, which represent negative and positive examples respectively. Their position corresponds to the classifier’s probability prediction and the color shows the classifier. At the bottom of the graph, the points to the left are those which are (correctly) assigned a low probability of the target class, and those to the right are incorrectly assigned high probabilities. At the top of the graph, the instances to the right are correctly assigned high probabilities and vice versa.

	Press Save Image if you want to save the created image to your computer in a .svg or .png format.

	Produce a report.

Example

At the moment, the only widget which gives the right type of signal
needed by the Calibration Plot is Test&Score. The Calibration
Plot will hence always follow Test&Score and, since it has no
outputs, no other widgets follow it.

Here is a typical example, where we compare three classifiers (namely
Naive Bayes, Classification Tree and Majority) and input
them into Test&Score. We used the Titanic data set. Test&Score then displays evaluation
results for each classifier. Then we draw Calibration Plot and ROC
Analysis widgets from Test&Score to further analyze the performance
of classifiers. Calibration Plot enables you to see prediction accuracy
of class probabilities in a plot.

[image: ../../_images/CalibrationPlot-example.png]

Confusion Matrix

[image: ../../_images/confusion-matrix.png]

Shows proportions between the predicted and actual class.

Signals

Inputs:

	Evaluation results

Results of testing the algorithms; typically from Test Learners

Outputs:

	Selected Data

A data subset from the selected cells in the confusion matrix.

Description

The Confusion Matrix [https://en.wikipedia.org/wiki/Confusion_matrix] gives the
number/proportion of instances between the predicted and actual class.
The selection of the elements in the matrix feeds the corresponding
instances into the output signal. This way, one can observe which
specific instances were misclassified and how.

The widget usually gets the evaluation results from Test Learners;
an example of the schema is shown below.

[image: ../../_images/ConfusionMatrix-stamped.png]

	When evaluation results contain data on multiple learning algorithms,
we have to choose one in the Learners box.

The snapshot shows the confusion matrix for Classification Tree and
Naive Bayesian classifier trained and tested on the Iris data. The
righthand side of the widget contains the matrix for the naive Bayesian
classifier (since this classifier is selected on the left). Each row
corresponds to a correct class, while columns represent the predicted
classes. For instance, four instances of Iris-versicolor were
misclassified as Iris-virginica. The rightmost column gives the number
of instances from each class (there are 50 irises of each of the three
classes) and the bottom row gives the number of instances classified
into each class (e.g., 48 instances were classified into virginica).

	In Show, we select what data we would like to see in the matrix.

	Number of instances shows correctly and incorrectly classified
instances numerically.

	Proportions of predicted shows how many instances classified
as, say, Iris-versicolor are in which true class; in the table
we can read the 0% of them are actually setosae, 88.5% of those
classified as versicolor are versicolors, and 7.7% are virginicae.

	Proportions of actual shows the opposite relation: of all true
versicolors, 92% were classified as versicolors and 8% as
virginicae.

[image: ../../_images/ConfusionMatrix-propTrue.png]

	In Select, you can choose the desired output.

	Correct sends all correctly classified instances to the output
by selecting the diagonal of the matrix.

	Misclassified selects the misclassified instances.

	None annuls the selection.

As mentioned before, one can also select individual cells of the table
to select specific kinds of misclassified instances (e.g. the
versicolors classified as virginicae).

	When sending selected instances, the widget can add new attributes,
such as predicted classes or their probabilities, if the
corresponding options Predictions and/or Probabilities are
checked.

	The widget outputs every change if Send Automatically is ticked. If not, the
user will need to click Send Selected to commit the changes.

	Produce a report.

Example

The following schema demonstrates well what this widget can be used for.

[image: ../../_images/ConfusionMatrix-Schema.png]

Test&Score gets the data from File and two learning
algorithms from Naive Bayes and Classification Tree. It performs
cross-validation or some other train-and-test procedures to get class
predictions by both algorithms for all (or some) data instances. The test
results are fed into the Confusion Matrix, where we can observe how
many instances were misclassified and in which way.

In the output, we used Data Table to show the instances we selected in
the confusion matrix. If we, for instance, click Misclassified, the
table will contain all instances which were misclassified by the
selected method.

The Scatterplot gets two sets of data. From the File widget it gets
the complete data, while the confusion matrix sends only the selected
data, misclassifications for instance. The scatter plot will show all
the data, with bold symbols representing the selected data.

[image: ../../_images/ConfusionMatrix-Example.png]

Lift Curve

[image: ../../_images/lift-curve.png]

Measures the performance of a chosen classifier against a random
classifier.

Signals

Inputs:

	Evaluation Results

Results of classifiers’ tests on data.

Outputs:

	None

Description

The Lift curve shows the relation between the number of instances which
were predicted positive and those that are indeed positive and
thus measures the performance of a chosen classifier against a random
classifier. The graph is constructed with the cumulative number of cases
(in descending order of probability) on the x-axis and the cumulative
number of true positives on the y-axis. Lift curve is often used in
segmenting the population, e.g., plotting the number of responding
customers against the number of all customers contacted. You can also
determine the optimal classifier and its threshold from the graph.

[image: ../../_images/LiftCurve-stamped.png]

	Choose the desired Target class. The default class is chosen
alphabetically.

	If test results contain more than one classifier, the user can choose
which curves she or he wants to see plotted. Click on a classifier
to select or deselect the curve.

	Show lift convex hull plots a convex hull over lift curves for all
classifiers (yellow curve). The curve shows the optimal classifier
(or combination thereof) for each desired TP/P rate.

	Press Save Image if you want to save the created image to your computer in a .svg or .png format.

	Produce a report.

	2-D pane with P rate (population) as x-axis and TP rate (true positives) as a y-axis. The diagonal line represents the behaviour of a random classifier. Click and drag to move the pane and scroll in or out to zoom. Click on the “A” sign at the bottom left corner to realign the pane.

Note

The perfect classifier would have a steep slope towards 1 until all classes are guessed correctly and then run straight along 1 on y-axis to (1,1).

Example

At the moment, the only widget which gives the right type of the signal
needed by the Lift Curve is Test&Score.

In the example below, we try to see the prediction quality for the class
‘survived’ on the Titanic data set. We compared three different
classifiers in the Test Learners widget and sent them to Lift Curve to see
their performance against a random model. We see the Classification
Tree classifier is the best out of the three, since it best aligns
with lift convex hull. We also see that its performance is the best
for the first 30% of the population (in order of descending
probability), which we can set as the threshold for optimal
classification.

[image: ../../_images/LiftCurve-example.png]

References

Handouts of the University of Notre Dame on Data Mining - Lift Curve.
Available here [https://www3.nd.edu/~busiforc/handouts/DataMining/Lift%20Charts.html].

Predictions

[image: ../../_images/predictions.png]

Shows classifiers’ predictions on the data.

Signals

Inputs

	Data

A data set.

	Predictors

Predictors to be used on the data.

Outputs

	Predictions

Original data with added predictions.

Description

The widget receives a data set and one or more predictors (classifiers,
not learning algorithms - see the example below). It outputs the data
and the predictions.

[image: ../../_images/Predictions-stamped.png]

	Information on the input

	The user can select the options for classification. If Show predicted class is ticked, the appended data table provides information on predicted class. If Show predicted probabilities is ticked, the appended data table provides information on probabilities predicted by the classifiers. The user can also select the predicted class he or she wants displayed in the appended data table. The option Draw distribution bars provides a nice visualization of the predictions.

	By ticking the Show full data set, the user can append the entire data table to the Predictions widget.

	Select the desired output.

	The appended data table

	Produce a report.

Despite its simplicity, the widget allows for quite an interesting
analysis of decisions of predictive models [https://en.wikipedia.org/wiki/Predictive_modelling]; there is
a simple demonstration at the bottom of the page. Confusion Matrix
is a related widget and although many things can be done with any of
them, there are tasks for which one of them might be much more
convenient than the other.
The output of the widget is another data set, where predictions are
appended as new meta attributes. You can select which features you wish
to output (original data, predictions, probabilities). The resulting data set can be appended to the widget, but you can still choose to display it in a separate data table.

Example

[image: ../../_images/Predictions-Schema.png]

We randomly split the data into two subsets. The larger subset,
containing 70 % of data instances, is sent to Naive Bayes and
Classification Tree, so they can produce the corresponding
classifiers. Classifiers are then sent into Predictions, among with
the remaining 30 % of the data. Predictions shows how these examples are
classified.

To save the predictions, we simply attach the Save widget to
Predictions. The final file is a data table and can be saved as in a
.tab or .tsv format.

Finally, we can analyze the classifiers’ predictions. For that, we first
take Select Columns with which we move the meta attributes with
probability predictions to features. The transformed data is then given
to the Scatterplot, which we set to use the attributes with
probabilities as the x and y axes, while the class is (already by
default) used to color the data points.

[image: ../../_images/Predictions-ExampleScatterplot.png]

To get the above plot, we selected Jitter continuous values, since the
classification tree gives just a few distinct probabilities. The blue
points in the bottom left corner represent the people with no diameter
narrowing, which were correctly classified by both classifiers. The
upper right red points represent the patients with narrowed vessels,
which were correctly classified by both.

Note that this analysis is done on a rather small sample, so these
conclusions may be ungrounded. Here is the entire workflow:

[image: ../../_images/Predictions-Example1.png]

Another example of using this widget is given in the documentation for the
widget Confusion Matrix.

ROC Analysis

[image: ../../_images/roc-analysis.png]

Plots a true positive rate against a false positive rate of a test.

Signals

Inputs:

	Evaluation Results

Results of classifiers’ tests on data

Outputs:

	None

Description

The widget shows ROC curves for the tested models and the corresponding
convex hull. It serves as a mean of comparison between classification
models. The curve plots a false positive rate on an x-axis
(1-specificity; probability that target=1 when true value=0) against a
true positive rate on a y-axis (sensitivity; probability that target=1
when true value=1). The closer the curve follows the left-hand border
and then the top border of the ROC space, the more accurate the
classifier. Given the costs of false positives and false negatives, the
widget can also determine the optimal classifier and threshold.

[image: ../../_images/ROCAnalysis-basic-stamped.png]

	Choose the desired Target Class. The default class is chosen
alphabetically.

	If test results contain more than one classifier, the user can choose
which curves she or he wants to see plotted. Click on a classifier to
select or deselect it.

	When the data comes from multiple iterations of training and testing,
such as k-fold cross validation, the results can be (and usually are)
averaged.

[image: ../../_images/ROC-Comparison.png]

The averaging options are:

	Merge predictions from folds (top left), which treats all the test data as if they came from a single iteration

	Mean TP rate (top right) averages the curves vertically, showing the corresponding confidence intervals

	Mean TP and FP at threshold (bottom left) traverses over threshold, averages the positions of curves and shows horizontal and vertical confidence intervals

	Show individual curves (bottom right) does not average but prints all the curves instead

	Option Show convex ROC curves refers to convex curves over each
individual classifier (the thin lines positioned over curves). Show
ROC convex hull plots a convex hull combining all classifiers (the
gray area below the curves). Plotting both types of convex curves
makes sense since selecting a threshold in a concave part of the
curve cannot yield optimal results, disregarding the cost matrix.
Besides, it is possible to reach any point on the convex curve by
combining the classifiers represented by the points on the border of
the concave region.

[image: ../../_images/ROCAnalysis-AUC.png]

The diagonal dotted line represents the behaviour of a random
classifier. The full diagonal line represents iso-performance. A black
“A” symbol at the bottom of the graph proportionally readjusts the
graph.

	The final box is dedicated to the analysis of the curve. The user can
specify the cost of false positives (FP) and false negatives (FN),
and the prior target class probability.

Default threshold (0.5) point shows the point on the ROC curve
achieved by the classifier if it predicts the target class if its
probability equals or exceeds 0.5.

Show performance line shows iso-performance in the ROC space so that
all the points on the line give the same profit/loss. The line further
to the upper left is better than the one down and right. The direction
of the line depends upon costs and probabilities. This gives a recipe
for depicting the optimal threshold for the given costs: this is the
point where the tangent with the given inclination touches the curve and
it is marked in the plot. If we push the iso-performance higher or more
to the left, the points on the iso-performance line cannot be reached by
the learner. Going down or to the right, decreases the performance.

The widget allows setting the costs from 1 to 1000. Units are not
important, as are not the magnitudes. What matters is the relation
between the two costs, so setting them to 100 and 200 will give the same
result as 400 and 800.

[image: ../../_images/ROCAnalysis-Plain.png]

Defaults: both costs equal (500), Prior target class probability 50%
(from the data).

[image: ../../_images/ROCAnalysis.png]

False positive cost: 830, False negative cost 650, Prior target class
probability 73%.

	Press Save Image if you want to save the created image
to your computer in a .svg or .png format.

	Produce a report.

Example

At the moment, the only widget which gives the right type of signal needed by the ROC Analysis is Test&Score. Below, we compare two classifiers, namely Classification Tree and Naive Bayes, in Test&Score and then compare their performance in ROC Analysis, Life Curve and Calibration Plot.

[image: ../../_images/ROCAnalysis-example.png]

Test & Score

[image: ../../_images/test-learners.png]

Tests learning algorithms on data.

Signals

Inputs

	Data

Data for training and, if there is no separate test data set, also
testing.

	Test Data

Separate data for testing.

	Learner

One or more learning algorithms.

Outputs

	Evaluation results

Results of testing the algorithms.

Description

The widget tests learning algorithms. Different sampling schemes are
available, including using separate test data. The widget does two
things. First, it shows a table with different classifier performance
measures, such as classification accuracy [https://en.wikipedia.org/wiki/Accuracy_and_precision]
and area under ROC [https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve].
Second, it outputs evaluation results, which can be used by other
widgets for analyzing the performance of classifiers, such as ROC Analysis or Confusion Matrix.

The Learner signal has an uncommon property: it can be connected to more
than one widget to test multiple learners with the same procedures.

[image: ../../_images/TestLearners-stamped.png]

	The widget supports various sampling methods.
	Cross-validation [https://en.wikipedia.org/wiki/Cross-validation_(statistics)]
splits the data into a given number of folds (usually 5 or 10). The
algorithm is tested by holding out examples from one fold at a time;
the model is induced from other folds and examples from the held out
fold are classified. This is repeated for all the folds.

	Leave-one-out is similar, but it holds out one instance at a
time, inducing the model from all others and then classifying the
held out instances. This method is obviously very stable, reliable …
and very slow.

	Random sampling randomly splits the data into the training and
testing set in the given proportion (e.g. 70:30); the whole procedure
is repeated for a specified number of times.

	Test on train data uses the whole data set for training and then
for testing. This method practically always gives wrong results.

	Test on test data: the above methods use the data from Data
signal only. To input another data set with testing examples (for
instance from another file or some data selected in another widget),
we select Separate Test Data signal in the communication channel
and select Test on test data.

	Only Test on test data requires a target class, e.g. having the
disease or being of subvariety Iris setosa. When Target class is
(None), the methods return the average value. Target class can be
selected at the bottom of the widget.

	Produce a report.

	The widget will compute a number of performance statistics:

Classification

[image: ../../_images/TestLearners.png]

	Area under ROC [http://gim.unmc.edu/dxtests/roc3.htm] is the
area under the receiver-operating curve.

	Classification accuracy [https://en.wikipedia.org/wiki/Accuracy_and_precision]
is the proportion of correctly classified examples.

	F-1 [https://en.wikipedia.org/wiki/F1_score] is a weighted harmonic mean of precision and recall (see below).

	Precision [https://en.wikipedia.org/wiki/Precision_and_recall] is the proportion of true positives among instances classified as positive, e.g. the proportion of Iris virginica correctly identified as Iris virginica.

	Recall [https://en.wikipedia.org/wiki/Precision_and_recall] is the proportion of true positives among all positive instances in
the data, e.g. the number of sick among all diagnosed as sick.

Regression

[image: ../../_images/TestLearners-regression.png]

	MSE [https://en.wikipedia.org/wiki/Mean_squared_error] measures the average of the squares of the errors or deviations (the difference between the estimator and what is estimated).

	RMSE [https://en.wikipedia.org/wiki/Root_mean_square] is the square root of the arithmetic mean of the squares of a set of numbers (a measure of imperfection of the fit of the estimator to the data)

	MAE [https://en.wikipedia.org/wiki/Mean_absolute_error] is used to measure how close forecasts or predictions are to eventual outcomes.

	R2 [https://en.wikipedia.org/wiki/Coefficient_of_determination] is interpreted as the proportion of the variance in the dependent variable that is predictable from the independent variable.

Example

In a typical use of the widget, we give it a data set and a few learning
algorithms and we observe their performance in the table inside the
Test&Score widget and in the ROC. The data is often
preprocessed before testing; in this case we did some manual feature
selection (Select Columns widget) on Titanic data set, where we
want to know only the sex and status of the survived and omit the age.

[image: ../../_images/TestLearners-example-classification.png]

Another example of using this widget is presented in the documentation
for the Confusion Matrix widget.

Index

Create Class

[image: widgets/data/icons/create_class.png]

Create class attribute from a string attribute

Signals

Inputs:

	Data

Input data set

Outputs:

	Data

Output data set

Description

Create class attribute from a string attribute

Examples

 _images/save.png

_images/AdaBoost-Example2.png
AdaBoost*

File Predictions

Info

Data: 150 nstances.
Predctors: 3
Task: Classification

AdaBoost

AdaBoost

027

027 — Irs-setosa

Classifcation Tree

000

000 — Irs-setosa

Logistic Regression
0.12:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

020:0.00 — Iis-setosal

Restore Original Order

Optons (dassification)
Showpredicted dass
Show predicted probabilties.

Classification Tree.

027

027 — Irs-setosa

000

000 — Irs-setosa

0.15:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.17:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.10:0.00 — Iis-setosa|

027

027 — Irs-setosa

000

000 — Irs-setosa

0.07:0.00 — Iis-setosal

Irs-setosa

Irs-versicolor
Irs-virginica

Logistic Regression

027

027 — Irs-setosa

000

000 — Irs-setosa

0.10:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.14:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

020:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

020:0.00 — Iis-setosa|

027

027 — Irs-setosa

000

000 — Irs-setosa

0.11:0.00 — Iis-setosal

Draw dtrbuton bars:

Show full data set

Orignaldata
Predictons
Probabiltes

Report

027

027 — Irs-setosa

000

000 — Irs-setosa

0.14:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

021:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.16:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

007:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.04:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.06:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.11:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.10:0.00 — Iis-setosal

027

027 — Irs-setosa

000

000 — Irs-setosa

0.08:0.00 — Iis-setosal

>

sepal length
5100
4500
4700
4600
5.000
5400
4600
5.000
4400
4500
5400
4800
4800
4300
5800
5700
5400
5100
5700
5100

_images/Majority-Knn-SchemaLearner.png
L Majority*
File Edt View Widget Options Help

Apply Automatically

Test& Score

Test & Score

Evaluation Resuts

Method AUC CA F1 Precision Recall
KNN 0980 0973 0.973 0974 0973
Majority 0.500 0333 0.167 0.111 0333

O Leave one out
O Teston train data
O Teston test data

Target Class.

(Average over dasses)

Report

_images/mean-learner-example2.png
Name

Mean Learner

Report

Mean Leamer

Linear Regression

Apply Automatically

Mean Learner*

'S

Test& Score

Name
Linear Regression

Regularization

No reguiarization

Ridge regression (12)

Lasso regression (L1)

Elastic et regression

Report

Samping
) Cross valdation
Number of fods: [0+

Stratifed
) Random samping
Repeat trainftest: (10 +

Training set size: 66 % +
Statied
) Leave one out
) Teston tradata
O Teston testdata
Report
Linear Regression ?
Reguarizaton sreng
Apha: 70 >
Eastc netming:
u L2
067:0.33

Apply Automatically

Test & Score

Evaluation Results

Method MSE RMSE MAE R2
Mean Leamer 84544 9200 6662 -0.003
Linear Regression 23.370 4834 3376 0723

_images/spreadsheet-simple-head11.png
x

<

H o o = ‘sample-headxisx - Excel 2@ - 0
HOVE NSHT PAGELAYOUT FORMULS DATA REVEW VEW ADDINS Teaw
Al A mD#function
B C D E F G H
S#gene spo-early spo-r c#heat0 i#heat10 i#heat 20
'YDR427W 0.301 0.546 -0.009 0.024
'YGLO48C 0.208 -0.061 -0.039 0.003
'YBRO39W -0.179 -0.219 -0.097 -0.011
YKL180W -0.085 -0.161 -0.061 -0.265 -0.419
'YHR021C -0.216 -0.253 -0.228 -0.168 -0.228
'YDR178W 0.017 0.07 0.058 0.286 0.205
YLLO41C 0.115 0.033 0.262 0.054
'YORO65W 0.005 -0.023 -0.038 0.222 0.088
Untitiedtab | @ [E— 1

_images/CorrespondenceAnalysis-Example.png
L Correspondence Analysis*

File Edit Widget Options _Help

Scatter Plot

Correspondence
Analysis

Component 2 (21.1%)

0 0z 04

‘Component 1(44.9%)

_images/Predictions-Example1.png
Fie Edit View Widget Options Help

- 0@

Data Sampler

i

Classification Tree

Scatter Plot

@ Naive Bayes(1)

@ Cassificaton Tree(1)

[show gridines.

] Show al data on mouse hover
[Show ciass density

(0] Label oy selected points

Zoom/select
AREVARESY

Automaticaly

Classfication Tree(1)

8

@)=

Select Columns ~ Scatter Plot

T Data Sampler
Informaton
03instances innput dota set..
Outputting 213 nstances.
Samping Type
(® Fixed proportion of data:

Select Columns

Features

@ rest SEP.

@ cholesterol

@ fasting blood sugar > 120
B restECG

@ maxHR

@ ecercindang

@ STby exercise

@ Classification Tree

@ Classification Tree(1)
@ Naive Bayes(1)

Target Varizble:

@ diameter narrowing

Meta Atirbutes.

Send Automaticaly

Report

diameternarrowing age gender chestpain restSBP cholesterol A

47000
71.000
4200
35.000
53000
62000
52000
62000
60,000

77000
62000
2200

70000

48000

66000
58.000

male
female
female
male

female
female
male

male

male

male

male
male

male

male
male
male

male

asymptomstic
asymptomatic
asymptomatic
asymptomatic
asymptomatic
asymptomatic
asymptomatic
atypical ang
typical ang
non-anginsl
asymptomatic
asymptomatic
typical ang
atypical ang
atypical ang
non-anginsl
asymptomatic
asymptomatic
asymptomatic
atypical ang

110,000
12000
132,000
126.000
138000
138000
128.000
128.000
150.000
150.000
125.000
124000
148,000
122,000
156,000
140,000
130,000
160.000
100.000
130.000

275000
149.000
341.000

_images/k-nearest-neighbors-regression.png

_images/SelectRows-stamped.png
Data (5]
In: ~205 rows, 26 variables.

Out: ~3rows, 13 variables.

0 Report

_images/Pythagorean-Forest-Example.png
Edit

Widget

Options Help

Random Forest
Regression

untitled*

Pythagorean Forest

Pythagorean Tree

Log scale factor

Plot Properties
[¥] Enable tooltps
[show legend

_images/DataSampler-stamped.png
Information
150 nstances in nput data set.
Outputting 105 nstances.
‘Samping Type
Fixed proportion of data:
%

O Fixed sample size:
Instances: i)
[sample with replacement.
O Cross vaiidation

Number of fods: |10
selected fold: |1

O Boostrap.

e o
] Replicable (deterministic) sampling
] stratify sample (when possible)

© Report sampie Data)

_images/SVM-support-vectors.png

_images/MDS-zoo-stamped.png

_images/Rank-and-Test.png
@

Rank*

Reduced Data - Data.

Naive Bayes

Remining Date — Test Dsta

Data Sampler

Test& Score

Test& Score (1)

Select Atrbutes

A

Manual

Bestranked:

Report

Send Automaticaly

i Test & Score (1)

Samping Evalustion Results

Cross valdation
Number of fods: [0+
Stratifed

Random samping
Repeat rainftest:

Traning setsze; | P

Cross valdation

Stratifed
Number of fods: [0+

Stratifed

Leave one out

Test on train data

© Random samping
Repeat rainfest:

Teston test data

n v

s Training set size: (66 % +

(Average over dasse Stratifed

) Leave one ot
Report

) Teston train data
O Teston test data.

Method AUC CA Fi Precision Recall
Naive Bayes 0.954 0043 0944 0952 0943

Test & Score =

Evaluation Results

Method AUC CA Fi Precision Recall

Naive Bayes 0.954 0,943 0943 0943

petal length
petal width

sepallength € 0349
sepal width € 0375

0843

_images/heat-map.png

_images/CN2RuleInduction-stamped.png

_images/transpose-example.png
@ unitled” - o x

- o x
Info
Festurenome Feature0)] Festure002 Feature003 Feature0)4
4instances (no missing values) Iris-setosa ris-setosa ris-setosa ris-setosa
150 features (no missing values)
= o " 5100 4900 470 450
- imeta atirbute (nomssng vaues) |2 sepal width 3500 3000 3200 3100
3 petal length 1400 1400 1300 1.500
i Vertles 4 petalwidth 0200 0200 0200 0200
[Visualize continuous values

_images/Rank-stamped.png
Send Automatically @

@ petal width
@sepal length
@ sepal width

c o
c 0375

oo
a1

o0 78627
0076 33663

45082
3130 0435

02

_images/file-data-table-workflow.png

_images/DistanceMap-Example1.png
@ Distance Map*

D A

Distances

File

&

Data Sampler

T Data Sampler

@ oformaton
150 stances i iput ot st
Outputting 30 nstances

Samping Type
Fixed proporton of data:

n%

O Fixed sample size

Instances: 1

] sample with replacement

O Cross validation
Number of fods: |10

selected fold: |1

Boostrap.

Options
] Repicable (deterministic) samping
[stratify sample (when possble)

Report Sample Dat

A Di. = B

Distances between

Distance Metric
Eucidean

Report

[Apply automatically:
Apply.

e

Distance Map

Eement Sorting

Gusterng
Cobors

R oraroes
Low:

High:

Annotations

None

Send Selected Automatcaly

Save Inage Report

_images/sql.png
=

[patabasel/schemal

T

Fessnas

[Auto-discover discrete variables.
[Download data to local memory

_images/Randomize-Default.png
o Randomize
Shuffled columns @
Classes | |Features | |Metas

Shuffied rows

None Al

]
80%

Replicable shuffiing g
@ Apply Automatically

(5] Report

_images/ScatterPlotExample-Explorative.png
o Scatter Plot*
File Edt View Widget Options Help

=)

‘Scatter Plot (1)

[show gridines.

] Show al data on mouse hover
[Show ciass density

[Label only selected points:

Q

Send Automaticaly

Send Automatically Save Image Report

_images/CalibrationPlot-example.png
o Calibration Plot*
Test & Score

Fie Edit View Widget Options Help
Evaluation Resuts

Method AUC CA F1 Precision Recall
NaiveBayes 0704 0.779 0590 0735 0492
Classification Tree 0683 0791 0539 0931 0380
ROC Analysis

Majority 0500 0,677 0000 0000 0.000

ROC Analysis

O Leaveone ot
O Teston an cta
Testa Score O Testontestta

Target Class.

(Average over dasses)

Report

Classification Tree

TP Rate (Sensivty)

0 0%

FP Rate (1-Spedificty)

Observed Average

0a 06 05
Predicted Probablty

_images/preprocess.png

_images/SVM-Predictions.png
Fie Edit View Widget Options Help e

Variable:

@ sepal length
@ sepal wicth

/é é\ n I setosa 14494 £0.1657
- S

Box Plot (Iis) 13500 15000 16000

@ SVMiis-setosa)
@ SVM(ris-versicolor)

Iis-versicolor: 4.2645 +0.4330
i

ﬂ h 3000 4.6000

Irsirginica: 5.5316 £0.5327
Box Plot (SVM)

[}
Data Sampler . _—_
Information 51000 5.5000 5.9000

150 nstances in nput data set.
Outputting 105 nstances.

‘Samping Type
(® Fixed proportion of data:

Box Plot (SVM)

Vb
@ sepaltength
@ sepalwicth
i setoso 19694 £0.1657
@ petal length
@ petalvicth 4
@i -
e -
@ SVMrissetoss) 10 100 e

@ SVM(ris-versicolor)
@ i)

0,001000 T
100 None

] Replcable (determiistc) samping Irsrginica: 5.5050 £0.532¢

] straty sample (when possble) Apply Automatically

40000 42000 45000

—
Report ‘Sample Data 51000 55000 58500

_images/DataInfo-Example.png
Data Info*

Edit Ve et Options Help

Scatter Plot

© Irissetosa
® rris-versicolor
© Iis-virginica.

‘Subset Data Info

@ Data Info

Data SetSize

o o
ogo
' o
8o
©
o
Send Automaticaly 02 04 06 08 1 12 14 16 18 2
petal width

Image Report

_images/ScatterMap-Example.png
L Scatter Map*
File Edt View Widget Options Help

|

_images/Continuize-stamped.png
Multinomial Attributes @
Target or first value as base:

Apply Automatically

_images/ROCAnalysis-AUC.png
TP Rate (Sensivty)

0 0%

FP Rate (1-Spedificty)

_images/manifold-learning-stamped.png
' Manifold Learning ?

Method

=3

Apply Automatically

Report

_images/cn2ruleinduction.png

_images/EditDomain-Example.png
o Edit Domain*
File Edt View Widget Options Help

=)

o]

3833232339383 %%33

3833232339383 %%33

_images/svm-regression2-stamped.png
Kemel @
O tinear
® potynomial
Orer
O samoid
Optnization Parameters @
Numerical toerance: 0,001000

© Repot | @ ‘Apply Automatically

_images/nomogram.png

_images/Discretize-Example.png
o Discretize*

Fie Edit View Widget Options Help

%0

%; e

Data Table (1)

-

§lg!

Default Discretization
O Equal-frequency discretization

Nom, of intervals: | 315

O Equal-width discretization

i
i

Inchidusl Atrbute Setings
@ sepal length: 555,615
@ sepal width: 295,3.35 Leave numeric.

@ petal length: 2.5, 475 Entropy-MDL discretization

@ petel width: 030,175 ‘Equal-frequency discretization
‘Equal-width discretization
N, of ntervals:| 5 %

Remove atirbute

EGGGGEGGEEEEGS

_images/select-columns-regression.png

_images/BoxPlot-Discrete.png

_images/File-set-feature-kind.png
File: | sample.xis
) URL:

nfo

8 instance(s), 6 feature(s), 1 meta attribute(s)

Data has no target variable.

Columns (Double click to edit)

1 function nominal
2 spo-early @ numeric
3 spomid @ numeric
4 heat0 @ numeric
5 heat 10 @ numeric
6 heat 20 @ numeric

7 gene 8 string

feature ~

feature

meta
skip

feature
feature

meta

Proteas, Resp, Ribo

Browse documentation data sets

_images/logistic-regression.png

_images/K-MeansClustering-Schema.png
Egs

()

Data Table

SelectRows

_images/VennDiagram-Example2.png
@ untitied”

Confusion Matrix SVM (Misclassified)
File Edit View Widget Options Help kmrm

Predicted

fandom forest
naive bayes

Predicted

Predicted

_images/select-columns-schema.png
0=0—+0

_images/CN2-Induction-Example2.png
CN2 Rule Induction
1)

Classification Tree

Name

a2 e nducer

Rueordering Covering dgorithm

Ordered @ Exchsive

Unordered O Weighted ¥

Rule search

Evaluation measure: |Entropy

i Testascore
Samping Evaluation Results

Cross valdation Method AC
Number of fods: [0+ .

_ Classification Tree 0.936
O Random samping
Repeat rainftest: [0+

Training set size: (66 % +
) Leave ane out

) Test on test data

O Test on train data

Target Class

(Average over dasses)

Report

Name

assificaton Tree.

Beam width:

Rule fitering

Minimum rule coverage:

Maximum rue length:

Statistical sigrificance
O Getautan

Relatve sigificance
O renta

Report

Feature Selection

Entropy

Pruring

Min. instances n leaves: |2

Stop spittng nodes vith less nstances than:

Limit the depth to:

Precision

_images/image-viewer-example2.png
@

R
Tree

7nodes, 4leaves

Display.
Zoom:
wiidth:

Depth: [Unimited

Edge width: | Relative to parent v

Terget dass: | None

Save Inage

Image Viewer* =

) —(@)—(

Classification Tree.

]

Classification Tree.

Image Viewer
Viewer

Info

Done:
images

Image Flename Attrbute

B images <

Tite Attrbute
@rene

Zoom

Data Table
Classification Tree Viewer

mammal

46.7%, 7/15 g

feathers

.
1 ——
> mammal

63.6%, 7/11
fins

1 /'<\

Report <

fish
80.0%, 4/5
predator
.
0o _—
fish fish
100%, 2/2. 66.7%, 2/3

Save Inage

Send

mammal
100%, 6/6

_images/rank.png

_images/tree-viewer-classification.png
@ unitled”

File Edit Viey

Oy @)=

N e e

“I% Tree Viewer

=

4 X

ST
=
e
[1
e R 1
S . E T
ES———— | [R
. e I — .

‘Apply Automatically

‘Save Image Report

o
Iris-setosa
33.3%, 50/150 ©
petal length
.
> 1.900 " < 1.900
Iris-versicolor
50.0%, 50/100 ©
petal width

> 4.900

Tris-virginia
667% 46 @

petal width

_images/Mosaic-Display-Example.png
File

Mosaic Display*

Mosaic Display

D stats
Dsex
@ survived

(o)

Interio Cobring
Pesrson residusls
Giss dstrbuton
] Conpare vt tota

survived

Savelmage | | Report

_images/HierarchicalClustering-Example.png
@ Hierarchical Clustering* =

=
Info

150 instances (no missing values)
4 festures (no missing values)

Disrete dass with 3 values (ho
mising values)
A——AE et et s ke

" Distances (rows) Hierarchical s
Clustering (rows)

Show variable labels (F present)
Visualze continuous values

Color by instance dasses.

Selection
Data Table
Select full ows

Pruning
® None:
O Max depth:

Selection
® Manual
O Height ratio:

O TopN:

Append cluster IDs:

Name: [Cluster

Place: | Meta variable

Send Automaticaly

Save Inage. Report

Data Table - =
s Cluster sepallength sepal width petal length petalwidth A
- [400 3200
« [5000 3500
- [5100 3200
o e 20w
o [5100 3200
[l 1 1600 3200
'y B 5300 3700
5o [isseasa] c1 5000 3300
- | 7000 3200
5 | 6400 3200
5 | 6900 3100
- | 5500 2300
5> | 6500 2800
s | 5700 2200
O 6300 3200
s | 2900 2400
s | 6600 2900
« [5200 2700
a1 © 5000 2000

_images/SilhouettePlot-stamped.png
(os) esors-sil (08 opoE R A-SIT (e

nav.xhtml

 Table of Contents

 		Orange Visual Programming

 		Loading your Data

 		In a Nutshell

 		Example: Data from Excel

 		File Widget: Setting the Attribute Type and Role

 		Select Columns: Setting the Attribute Role

 		Header with Attribute Type Information

 		Three-Row Header Format

 		Data from Google Sheets

 		Data from LibreOffice

 		Datetime Format

 		File

 		Signals

 		Description

 		Example

 		Loading your data

 		SQL Table

 		Signals

 		Description

 		Save Data

 		Signals

 		Description

 		Example

 		Data Info

 		Signals

 		Description

 		Example

 		Data Table

 		Signals

 		Description

 		Example

 		Select Columns

 		Signals

 		Description

 		Examples

 		Select Rows

 		Signals

 		Description

 		Example

 		Data Sampler

 		Signals

 		Description

 		Examples

 		Transpose

 		Signals

 		Description

 		Example

 		Discretize

 		Signals

 		Description

 		Example

 		Continuize

 		Signals

 		Description

 		Examples

 		Randomize

 		Signals

 		Description

 		Example

 		Concatenate

 		Signals

 		Description

 		Example

 		Paint Data

 		Signals

 		Description

 		Example

 		Python Script

 		Signals

 		Description

 		Examples

 		Feature Constructor

 		Signals

 		Description

 		Example

 		Hints

 		Edit Domain

 		Signals

 		Description

 		Example

 		Image Viewer

 		Signals

 		Description

 		Examples

 		Impute

 		Signals

 		Description

 		Example

 		Merge Data

 		Signals

 		Description

 		Example

 		Hint

 		Outliers

 		Signals

 		Description

 		Example

 		Preprocess

 		Signals

 		Description

 		Example

 		Purge Domain

 		Signals

 		Description

 		Example

 		Rank

 		Signals

 		Description

 		Scoring methods

 		Example: Attribute Ranking and Selection

 		Example: Feature Subset Selection for Machine Learning

 		Color

 		Signals

 		Description

 		Discrete variables

 		Numeric variables

 		Example

 		Box Plot

 		Signals

 		Description

 		Example

 		Distributions

 		Signals

 		Description

 		Heat Map

 		Signals

 		Description

 		Example

 		References

 		Scatter Plot

 		Signals

 		Description

 		Intelligent Data Visualization

 		Explorative Data Analysis

 		Example

 		Venn Diagram

 		Signals

 		Description

 		Examples

 		Linear Projection

 		Signals

 		Description

 		Example

 		References

 		Scatter Map

 		Signals

 		Description

 		Example

 		Sieve Diagram

 		Signals

 		Description

 		Example

 		References

 		Pythagorean Tree

 		Signals

 		Description

 		Example

 		References

 		Pythagorean Forest

 		Signals

 		Description

 		Example

 		References

 		CN2 Rule Viewer

 		Signals

 		Description

 		Examples

 		Mosaic Display

 		Signals

 		Description

 		Example

 		Silhouette Plot

 		Signals

 		Description

 		Example

 		Tree Viewer

 		Signals

 		Description

 		Examples

 		Geo Map

 		Signals

 		Description

 		Examples

 		Nomogram

 		Signals

 		Description

 		Example

 		Naive Bayes

 		Signals

 		Description

 		Examples

 		Logistic Regression

 		Signals

 		Description

 		Example

 		Classification Tree

 		Signals

 		Description

 		Examples

 		Nearest Neighbors

 		Signals

 		Description

 		Example

 		Load Classifier

 		Signals

 		Description

 		Example

 		Majority

 		Signals

 		Description

 		Example

 		Random Forest Classification

 		Signals

 		Description

 		Example

 		References

 		Save Classifier

 		Signals

 		Description

 		Example

 		SVM

 		Signals

 		Description

 		Examples

 		References

 		CN2 Rule Induction

 		Signals

 		Description

 		Examples

 		References

 		AdaBoost

 		Signals

 		Description

 		Examples

 		Linear Regression

 		Signals

 		Description

 		Example

 		Mean Learner

 		Signals

 		Description

 		Examples

 		Nearest Neighbors

 		Signals

 		Description

 		Example

 		Stochastic Gradient Descent

 		Signals

 		Description

 		Example

 		SVM Regression

 		Signals

 		Description

 		Example

 		Regression Tree

 		Signals

 		Description

 		Examples

 		Regression Tree Viewer

 		Signals

 		Description

 		Examples

 		Random Forest Regression

 		Signals

 		Description

 		Example

 		PCA

 		Signals

 		Description

 		Examples

 		Correspondence Analysis

 		Signals

 		Description

 		Example

 		Distance Map

 		Signals

 		Description

 		Examples

 		Distances

 		Signals

 		Description

 		Example

 		Distance Matrix

 		Signals

 		Description

 		Example

 		Distance Transformation

 		Signals

 		Description

 		Example

 		Distance File

 		Signals

 		Description

 		Example

 		Save Distance Matrix

 		Signals

 		Description

 		Example

 		Hierarchical Clustering

 		Signals

 		Description

 		Examples

 		k-Means

 		Signals

 		Description

 		Examples

 		MDS

 		Signals

 		Description

 		Example

 		References

 		Manifold Learning

 		Signals

 		Description

 		Example

 		Calibration Plot

 		Signals

 		Description

 		Example

 		Confusion Matrix

 		Signals

 		Description

 		Example

 		Lift Curve

 		Signals

 		Description

 		Example

 		References

 		Predictions

 		Signals

 		Description

 		Example

 		ROC Analysis

 		Signals

 		Description

 		Example

 		Test & Score

 		Signals

 		Description

 		Classification

 		Regression

 		Example

_images/Pythagorean-Tree-comparison.png
Pythagorean vs. Tree Graph Visualization =

File Edit View Widget Options Help
Classifcation Tree | P0CTeaN Tree

:& Classification Tree:
Viewer

Pythagorean Tree

_images/feature-constructor.png

_images/pca.png

_images/linear-regression-example1.png
L4
File Edit View

D

Linear Regression®

o)

Data Table

Widget Options Help

Predictions

Test& Score

SVM Regression

SVM Regression

Name.

Name.

Info

506 nstances (no missing values)
13 features (no missing values)

Continuous target variable (no missing
values)

1 meta attrbute (no missing valves)

Variables.
Show variable labels (f present)
] isualize continuous vaiues

Color by instance dasses.

Selection
Select full ows

Data Table

Restore Origial Order

Report

VM Regression

Linear Regression

Send Automaticaly

Info

Data: 506 nstances.
Predctors: 1
Tesk: Regression

MEDV

Linear Regression

30004
25025
30368
2407
2754

SR Type

Regularization

@ esm Cost (©):

(® Noreguiarization

Loss epsion (2):

Ovsr Cost (©):

O Ridge regression ()

Complexity bound (v):

O Lasso regression (L1)

Kernel

O tinear Kemel: (@x-y +0)°

O Eistic net regression

@ 0,00

® Polynomial

= 0,00

O rer

a 30

O sigmoid

Optimization Parameters

Numerical tolrance:

0,001000

[m] Apply.

Regularization strength:

Alpha: 0.0001
Blstic net mixing:

L

Apply Automatically

Restore Original Order

Data View
[Show full data set

Output
orignal data

] predictions

] Probabies

Predictions

Linear Regression
30004
25.026.
30568
28607
Samping
® Cross vaidation

Number of fods:

© Random samping

Repeat traintest:

Report

Training set size:

O Leave one out
O Teston train data
O Teston test data

Test & Score

Evaluation Results

Method MSE RMSE MAE R2
Linear Regression 23.370 4834 3376 0723
SVM Regression 31.708 5631 3547 0624

_images/Outliers-stamped.png
Information

150 instances
120 nlers, 30 outiers.

Outter Detection Method o
‘One s SVM with non-inear kernel (REF)

_images/data-table-with-class1.png
Info
Sinstances

5 features (10.0% missing values)
Discrete dass with 3 values (no missing
values)

1 meta atirbute (no missing values)

Restore Orignal Order

Variables.

_images/SVM-Evaluation.png
Majority

Nearest Neighbors

Options

Help

'S

Test& Score

Samping
Cross valdation
Number of fods: [0+
Stratifed
O Random samping
Repeat trainftest: (10 +
Training set size: (66 % +
Stratifed
O Leave one out

O Testontest data

O Teston train data

Target Class.

(Average over dasses)

Report

Evaluation Results

Method AUC CA F1 Precision Recall

Majority 0.500 0333 0.167 0.111
KNN 0980 0.973 0.973 0974
SUM 0960 0.947 0.947 0947

0333
0973
0947

_images/transpose.png

_images/impute.png

_images/NaiveBayes-Predictions.png
Naive Bayes*
Widget Options _ Help

Random Forest
Classification

'S
A Test& Score
7

@]

Random Forest Classification

Name.

BosicProperties
Nuber of res:

] Number of attrbutes considered at each spit:
] Fixed seed for random generator:

Growth Control
] Limit depth of indvidual trees:
Do not spit subsets smaler than:.

Apply Automatically

Apply Automatically

O Leave one out
O Teston train data
O Teston test data

Target Class.

(Average over dasses)

Method AUC CA FI Precision Recall
Naive Bayes 0925 0.900 0900 0900 0.900
Random Forest Classification 0.960 0.947 0.947 0947 0.947

Report

_images/geomap.png

_images/select-columns-reassigned.png

_images/Nomogram-LogisticRegression.png
eoe Nomogram

Target class

Iris-setosa

T o 00 20 40 60 80 100 120 140
£ Normalize probabil

Points
Scale
Point scale
© Log odds ratios petal length
Display features.
Al
© Best ranked: 2 |
Sort by: Absolute importance
sepal width
Continuous features: | 2D curve
= .u.a o0 00 B0 T
Probabllities (%) 10 20 40 70

© Save Image @ Report

_images/Classification-Tree-Subset.png
Saatter Plot
Cassfication Tree ;2 rons
Color: s
LS Tree Viewer
= Labet: | (lolabek)
=i
“IL Tree Viewer =
Tree
Snodes, Sleaves.
Tris-setosa
33.3%, 50/150
Display ©
Zoom: 1 petal length
=
width: 1 <1900 —— 1w
Depth: [unimted B is-versicolor
50.0%, 50/100
et e et - i
Target cass: [None. - petal width
=
>1.700 <1700
<4000

Save Image Report

petal icth

24

22

18

16

14

12

05

05

04

02

- o x
o ®
o o
Qo 000 o
00 o
@®»O o
r fe19) [elie]
@o o
@O @O0 O
e o
oo o L]
© @’ e
e oo L]
[Siceiesrio]
o
o
oamo © Iris-setosa
aoo ® Iris-versicolor
felci 1 13]e) © Iris-virginica
o @
T z g g g 7

petallength

_images/Randomize-Example1.png
eoe Data Table

eoe 9 untitied Info

P s scpallength sepalwidth petallengtn _petalwidth
N 5100 3500 1.400 0.200
4 features o missing vlues) 4.900 3.000 1.400 0.200
@ :_-:':;:e;'ﬁ:;‘"" BN 2700 3.200 1.300 0200
g —— 4.600 3100 1500 0.200
5.000 3,600 1.400 0.200
Data Table arab 5.400 3.900 1.700 0.400
k- e § 4600 3.400 1.400 0300
E :‘s‘;‘;‘i:“::’::‘:: L’:I;'::“"" 5.000 3.400 1500 0.200
o by oot cisons . 4.400 2800 1.400 0.200
4.900 3100 1500 0.100
@ o ®>L<@ Selection 5.400 3.700 1500 0200
S — 4.800 3.400 1.600 0.200
P e Data Table 1) 4.800 3.000 1.400 0.100
4.300 3.000 1100 0.100
5.800 4.000 1200 0.200
5.700 4.400 1500 0.400
5.400 3.900 1.300 0.400
Randomize - 5100 3,500 1.400 0300
shtod columns R conc AliGinat a1y 200 2800 1700 0300
[Classes Features Metas o000 Data Table (1)
S o i I ength 1 width tallengtn st wigtn
o ® et e taat] w 5100 a 3.500 i 1.400 i 0.200
100% 4 features (no missing values) 4.900 3.000 1.400 0.200
B X KO 4700 3200 1300 0200
IR e DRl "N:T'nr::::::,m 2,600 3100 1500 0200
5.000 3,600 1.400 0.200
a Apply Automatically.) 5.400 3.900 1700 0.400
e 4600 3.400 1.400 0300
Repoit [Show variable labels (if present) 5.000 3.400 1.500 0.200
; gj:f;:l::;'::;:::’ o 4.400 2.900 1.400 0.200
4.900 3100 1500 0.100
Saection 5.400 3700 1500 0.200
S — 4.800 3.400 1.600 0.200
4.800 3.000 1.400 0.100
4.300 3.000 1100 0.100
5.800 4.000 1200 0.200
= 5.700 4.400 1500 0.400
5.400 3.900 1.300 0.400
. 5100 3500 1.400 0.300
R conc AliGinat a1y 200 2800 1700 0300

_images/Distances-stamped.png

_images/sieve-diagram.png

_images/mosaic-display.png

_images/RandomForest-Test.png
L Random Forest Classification*
File Edt View Widget Options Help

Method AUC CA FI Precision Recall
Classification Tree 0955 0.940 0940 0841 0940

& @ Random ForestClosfcation 0965 0953 0953 0953 0953
e

O teave oneaut
i Testa Score O Teston train data
O Testontestdata

Classification Tree
Target Class.

(Average over dasses)

o

Report

Random Forest
Classification

Classification Tree

BosicProperties
Nomber of rees: 1
] Number of attributes consicered at each spit: |5
] Fixed seed for random generator: o

Min.instances nleaves: |2 e

‘Stop spliting nodes with less nstances than: |5
Linit the depth to: 100

] Limit depth of indvidual trees:
Do not spit subsets smaler than:.

Apply Automatically Apply Automaticaly

_images/box-plot-example1.png
Edtt View Widget Options Help

BoxPlot (1)

) —(B)—E

Classification Tree Classification Tree. BoxPlot (2)
Viewer

Scatter Plot

© Inssetosa
® Iis-versicolor
© Insvirginica

02 04 06 05

1

12 14 15 15
petal width

z

27 24

_images/SelectColumns-stamped.png
Availzble Varizbles @

Fiter

@ rest SBP.

@ fasting blood sugar > 120
B restECG

@ maxHR

@ cholesterol

@ chest pain

Features. e

@ age

@ gender

@ oercindang

@ STby exercise

@ major vessels colored
@ thal

Target Variable @

@ diameter narrowing

Meta Atirbutes @

@ slope pesk exc ST

@ send Automatically

_images/mean-learner.png

_images/select-columns-start.png

_images/pythagorean-forest.png
A.1d

_images/ROCAnalysis-example.png
@ ROC Analysis*

D s

File ROC Analysis

A

Classification Tree. i
Lift Curve.
Test& Score
Naive Bayes

Calibration Plot

i Test & Score =

Samping Evalustion Results

Plot

Target Class.

ves B

Classifer

W Classification Tree
Naive Bayes

Observed Average

O/@TmE Method AUC CA F1 Precision Recall

Nomber off9s: 110 ¥ lassfcation Tree 0683 0791 0539 0931 0380
Statifed

0704 0779 059 0.735 0492

Noive Bayes
O Randon sanging .

Repeat trainftest: (10 +
Training set size: (66 % +

Stratifed

O Leave one out.
O Teston train data

O Testontest data

Target Class.

(Average over dasses) +.

Report

how rug

Save Inage

Plot
Target Class.

ves

Classifiers.

- o

Calibration Plot

-
08
06
04
02
DT e

0 0z 04 08
Predicted Probabiity

05

v
Plot
Target Class.

ves

Classifiers.

W Classification Tree
Naive Bayes

Lift Curve

W Classification Tree
Naive Bayes

Combine ROC Curves From Folds.

Merge Predicions from Folds

ROC Convex Hul

] Show convex ROC curves.

[show ROC convex hull

how performance ne
PP Cost:

PN Cost:

Prior target dass probabiity: |50%

Save Inage

TP Rate (Sensivty)

E)
E)

0z

Report

0 0%
#P Rate (1-Specficty)

0

0%

05

_images/Mean-stamped.png
~ Mean Leamer
Neme @

Mean Learner|

@ Report @ [ool Avtomatialy

_images/Randomize-Example2.png
e0e Test & Score

99 untitied sampling Evaluation Resuits
© Cross validation Method v AUC | CA | F1 | Precision | Recal
Number of folds: | 10 [Logistic Regression 0.990 0.960 0.960 0.962 0.960

4 stratified

Learner

Random sampling
Repeat traintest: | 10 [

Logisic Regression Training set size: | 66 % [
‘Stratified o
Leave one out

Test on train data

Test on test data

QY= B

File Randomize Test&Score | (Average over classes) B

(Randormize)
Report
° Randomize | eoe Test & Score (Randomize)
Shuffied columns " §
. = Sampling Evaluation Resuits
[Classes ~ Features Metas
© Cross validation Method v AUC | CA | Fl | Precision | Recall

Shufled rows Number of folds: | 10 [Logistic Regression 0.518 0.347 0.335 0.332 0.347

Al Stratified
Random sampling

100%
Repeat traintest: | 10 [

Replicable shuffling

None

Apply Automatically

Leave one out
Test on train data
Test on test data

Report

Target Class
(Average over classes) B

Report

_images/SVM-with-support-vectors.png
Widget

Options

Help

Showlegend
[show gridines.

[Show al data on mouse hover
[Show ciass density

[Label only selected points:

Q

0,001000

100

Apply Automatically

Send Automaticaly

Scatter Plot

O s setosa

O Iris-virginica

oo.o
o
g
%0

Save Image Report

0z

e

0%

05

1

12 14
petal width

6

s

z

27 24

_images/CN2-Induction-Example1.png
CN2 Rule Induction

CN2 Rule Induction

Name

CN2 Rule Viewer

IF conditons
feathers<0
milkz0)

hairz0

airbomez0

a2 e nducer

finsz0

Rule ordering

O Unordered

Rule search
Evaluation measure:

Beam width:

Rule fitering
Minimum rule coverage:
Maximum rue length:

Statistical sigrificance
O Getautan

Relatve sigificance
O renta

Report

Covering algorithm

legs=5
leg
eggs=0
breathes=0
aquaticz0

Entropy predatorz0

backbonez0

TRUE

Restore orignal order

THEN class
~bird
~mammal

insect

insect
type=fish
typesinvertebrate
typ

typ

typ

typ

y

Distribution

031
o1

Compact view

Probabiltes [%]
4:78:4:4:4:4:4
2:2:2:2:2:88:2
RIERIET]
5:5:5
25:12:12
33:11:11
12:12:25
8:8

RERITRITES)
5:5:70:5
12:12:12:12
RISt
12:12:12:12
8:8:8:8:50
5
10:10:10:10:10:10:40
12:12:12:12:12:12:25
EIRITRLIRIPE- TP
IR TR IR EIRTPR TP

Quality

Length

_images/Scatterplot-Titanic.png
Showlegend

[show gridines.

[Show al data on mouse hover
Show dass densty

[Label only selected points:

Q

Send Automaticaly

Save Image. Report

_images/cn2ruleviewer.png

_images/SVM-new-stamped.png
cost(@:[1,000
O vsm complesity (v): 0,50

‘Optimization Parameters @
Numerical tolerance: 0,001000
w0fs

Apply Automatically

_images/ROCAnalysis-Plain.png
Analyss

] Defaut threshold (0.5) point

[show performance e
P Cost:

PN Cost:

Prior target dass probabilty:

Save Image.

Report

o4 3
FP Rate (1-Spedificty)

_images/SelectColumns-Example2.png
Confusion Matrix =

L Select Columns* - =
. Leamers
View Predicted
Naive Bayes
Classification Tree female male I
™ Random Forest Classificatic|
female 0 7 o
) n R
D b3 18 285 303
Select Calumns &
Nurber of stances +
File i e
Test & Score Confusion Miatix
o e di he
ender diameter narrowins chest pain
203 nstances (vo mising values) s <) P
Nalve Bayes festres ro missing vakes) [meie T 0 ypicalang
Disrete dass with 2vaues (no e asymptomatic
issing values) /Pt
i 1meta attbute (nomissng values) mle 1 asymptomatic
Classifcation Tree Varisbes B aypicalang
Show variablelabels (fpresent) B stypical ang
® Visusize continuous vabes e rmptomtic
e — Colo by instance casses EE B
Random Forest o . Selecton mele 1 asymptomatic
Classifcation . soymptomatic
Fiter age
rest S8 Grestpan,
fostingblood sugar > 120 cholesterl fmde T o sypicalang
restECG e 1 non-anginal
T mae
0 ical ang
slope peak exc ST atypical ang
@ ourcindng = [rele R o ron-anginal
SToyemase e jmie o non-anginal
major vessels colore .
i 1 stypical ang
thel Targetvariable Report
> endier —
o Send Automatically
Veta Atrbutes
[y
diameter narrowing
Do
Report Reset Send Automatialy

_images/regression-tree.png

_images/Impute-Example.png
L Impute*

Fie Edit View Widget Options Help

a
@—o

Data Table (Imputed)

Default Method

O Don'timpute

O Averagepost fiequent

O Asadistinct vaive

® Modebased imputer (snple ree)

(© Random values.

(O Remove instances with unknown values.

Send Automaticaly

Data Table (Imputed)

Individual Attribute Settings

@ sepal length O Default (above)
= ::::m O pontimpute 3500
@ petal width O Average/Most frequent

@ iris -> model (simple tree) O s a distinct value

(® Model-based imputer (simple tree)

O Random vaues

O Remve nstances with unknown vaues
O e

s setosa

sepallength sepal width
3200

Send Automaticaly

_images/randomize.png

_images/saving-tab-delimited-files.png
Save as type: | Excel Workbook (aisx)

_images/Predictions-Schema.png
G)

IS @)=

Select Columns ~ Scatter Plot

Classification Tree

_images/Predictions-stamped.png
o @

Data: 45 instances.
Predctors: 2
Task: Classification

Restore CrignalOrder

Options (dassification) @
Show predicted dess

_images/HeatMap-Example1.png
L Heat Map*
File Edt View Widget Options Help

R

o O
o
#

Merge

[Merge by kmeans

)

Select Columns Heathiap (1)

Select Columns

Send Automaticaly

Send Automaticaly

Save Image Report

_images/SieveDiagram-Titanic-age-survived.png
survived

_images/distance-matrix.png

_images/Rank-Select-Schema.png
D)= A(w)====0

Data Table

_images/StochasticGradientDescent-stamped.png
Eucidean norm (L2)
O Basticnet (L1and12)
@ 0,0001

Ltrato: 0,15

Inverse scaing
0 n= 0,01
Power t: 0,25
@ Number of iterations: | 5

0 Rt @ Apply Automatically

_images/kMeans-Scatterplot.png
Showlegend
[show gridines.

[Show al data on mouse hover
[Show ciass density

[Label only selected points:

Q

Send Automaticaly

Save Image Report

Scatter Plot

Apply Automatically

_images/k-NearestNeighbours-Schema.png
File Edit View Widget

Nearest Neighbours
Options _ Help Evaluaton Resuts

Method AUC CA F1

Precision Recall
Majority 0.500 0333 0.167 0111 0333
KNN 0980 0973 0.973 0974 0973

¢ i [Spr——
O Teston van et

Test& Score

(O Teston test data
@ —

(Average over dasses)

Report.
% Nearest Neighbors ?

Majority

Apply Automatically

Apply Automatically

_images/PythonScript-stamped.png
Python saipt @

import random
import Orange

print (("Number of attribute
print (("Number of instances

: $s")%(len(in_data.domain)))
$s")% (len(in_data)))

“Data info

5) [MSC v.1600 32 bit

(Intel)] on win32

Type "help”, "copyright”, "credits" or "license" for

more information.
(PythonConsole)

>>>

Running script:

Hello world

>>>

Running script:

Number of attributes: 17
Number of instances: 6
>>>

_images/Color-palette-discrete-stamped.png
Select Color

2]

_images/outliers.png

_images/transpose-stamped.png
O Tans.. 7 X

Feature names o
© Generic
From meta atrbute:

Apply Automatically @

Report

_images/PaintData-stamped.png
x
{1

ResettolnputData @

Corern || nom®]

Send Automaticaly @

_images/manifold-learning-example.png
@ untitied” - o x
File Edit View Widget Options Help

& Scatter Plot. _ = =
o
aex @ >
File &:& ScatterPlot | axsy: | @ct >
’ Informative Projections|
Ll Sterig: g o
] Jitter continuous values
1 Manifold Leaing o pans
] Metrod o @ty -
e o Lobet | Qolabek) S
Shape: | (same shape) B
sz [(Somesae) S
Metrc B~ -
Symbol size: I
Rec Opacity: 1
Conponents: 0
a = Plot Properties
Astomateal
- soply y e,
: [show gridines.
=] Sl dtn s ever
] Show diass density.
] Label only selected points
Zoom/Select.
B W Qi
%] ‘Send Automatically.

Save Image o=y

_images/Pythagorean-Tree1-continuous.png
Mean: 20,525
Standard deviation: 0,618
4/9 samples (44.444%)

AGE £ 47.850
DIS > 4464

INDUS < 5415

LSTAT € (7.570, 14.400]
RM € (5764, 6.078)
TAX > 208.000

CRIM = 0.042

_images/Pythagorean-Tree-scatterplot.png
Scatter Plot

_images/LinearProjection-example.png
Axes
Displayed

O }/<

File

Linear Projection®

Data Table

sepal length
sepal width
petal length
petal idth

Opacity:

[Show ciass density

Shape: | Same shape.

Sze: [Samesize

Nore.

Zoomselect

DYV

Automaticaly

Report

sepal width

 Irissetosa
Iis-versicolor

© Insvirginica

petal length
-

-
sepallength

=
Info

92instances (no missing values)
4 festures (no missing values)

Discrete dass with 3 values (no
mising values)
Nometa atirbutes.

Variables
Show variable labels (F present)
Visualze continuous values

Color by instance dasses.

Selection
Select full ows

Restore Origial Order

Report

Send Automaticaly

Data Table - =

iris sepal length sepal width petallength petalwidth A
o | = 2600 4000 1200
[i 2300 3300 o000
+> [2 2700 3200 1300
< | - 3000 2200 200
« [2900 2200 200
< [22 2900 2300 T30
N B 2500 3000 100
[B 2200 4100 00
st risvirginica | 3200, 2700 5100 1900
» | - 3000 5900 2100
N B s 180
A B 3000 5200 2200
> | = 3000 6600 2100
s | > 2900 6300 1200
S 7 2500 s 180 .

_images/distance-transformation.png

_images/color.png

_images/box-plot.png
i3

_images/PCAExample2.png
File

Edtt View Widget Options Help

o=@

Proportion of variance

=
nfo

Sinstances (no missing values)

4 festures (no missing values)

No target variable.

1 meta attrbute (no missing values)

Variables.

Data Table (Components)

component sepal length
1 pct

22
3P

Data Table (Transformed Data)

sepal width

pct

_images/Mosaic-Display-stamped.png
Mosaic Display

female

t second third

status.

suvived: Wno W yes

st

_images/Color-Example-1.png
Options _Help

>—/—<@>—<s

Color

Aisx: | @ petalwdth

axsy: | @petallength

Score Plots.

Jtering: 0%

] Jitter continuous values

Points
Color: ins
Label: |(lolabels)
Shape: | (same shape)
Soei [(same size)
Symbol size:

Opacity:

Plot roperties:
Showlegend

[show gridines.

[Show al data on mouse hover

[Show ciass density

] Label only selected points:

ZoomSelect

B O Qf|:

Send Automaticaly

Save Inage Report

petal length

Scatter Plot

Scatter Plot

Irssetosa
Iis-versicolor

@ rris-virginica

Discrete Variables:

Irs-setosa

Numeric Varables

sepallength
sepalwidth
petallength
petalwidth

Apply automatcaly

02 04 06 08

1

12 14
petal vidth

6

P

_images/distance-file.png

_images/SaveClassifier-Example.png
Logistic Regression

=

Save Classifier*

‘Save Classifier
Data Table

~ Logistic Regression

Name.

Logitic Regression_aipha

Regularization type:
Strength:

Ridge (L2)

Apply Automatically

- o

Info
435 instances

16 features (5.6% missing valves)
Discrete dass with 2 values (1o
mising values)

3meta atributes (o missing values)

Variables.

Send Automaticaly

0961
o011
0001

_images/mds.png
wE

_images/K-MeansClustering-Schema2.png
0-¢0-9-©

_images/scatter-map.png

_images/data-table-regression1.png
Info
Sinstances

2 features (12.5% missing values)
Continuous target variable (12.5%
mising values)

2meta atributes (o missing values)

Restore Orignal Order

Variables.

Proteas
Proteas
Resp
Ribo
Ribo
Resp
Resp
Resp

_images/DistanceMatrix-stamped.png
Distance Matrix

[lris-setosa Irs-setosa Iis-setosa Iris-setosa lris-setosa _Iris-versicolor _lris-versicolor _Iis-versicolor _Irs-versicolo ~
iis-versicolor| 2955 2048 3002 2951 298] 152 1030 15% 043
ins-versicolor| 2152|2406 2285 2435 2632 2112] 2657 091

Iris-versicolor| 3004 3209 1572 1010 158 045

Irs-versicolor Y 0843 1425 076

Irs-versicolor Y Y 0843 066

Irs-versicolor 4 0.458] 097

Irs-versicolor 2122 11

Irs-versicolor Y Y 0922] 1487 054

Irs-virginica ¥ 1808 1616 266

Irs-virginica 1253 134

Irs-virginica 4 1187 a1

Irs-virginica 3 0.9%]

Irs-virginica 1212

lrs-virginica 193
<

Labels: [None Send Automaticaly

_images/NaiveBayes.png

_images/venn-workflow.png
Scattrpiot
VennDisgram DataTable
s (selected instances
from scatterplots)
‘Scatter plot

{0}
@

_images/Scatterplot-Iris-stamped.png
Showlegend
[show gridines.

[Show al data on mouse hover
[Show ciass density

] Label only selected points:

Zoonfselect @
B Q

Send Automaticaly @

Report @

_images/Outliers-Example.png
)=

File Outiers

Information
150 instances.
120 nfes, 30 outiers

Outliers*

Scatter Plot (nliers)

Outier Detecton Method
(® One dass SVM with non-inear kernel (REF)
Nt AisData
e — misx: | @peiwigh ~
Kernelcoefcent sy | @petallength ~
O Covariance estimator SerElEs
Contaminaton:
stmvg: [0%
L] Jitter continuous values
[support fraction:
Ponts
a cor: (@i B
Lo (lolabels) B

Shape: |(sameshape) v

B
S —
opecty: 1

Plot roperties
Showlegend

[show gridines.

] Show al data on mouse hover
[Show ciass density

] Label only selected points:

Zoomselect

B O Qf|:

Send Automaticaly

Save Inage. Report

Data Table (Outlers)

petal length

0 Data Table (Outliers) -0
o
e) iis sepal length sepal width petal length petal width A
4 features (oo mising values) i 0 L [t
Dt i3 vikes 0 2 3100 0200
Nometa atrbutes. 3 2400 300
N 2000 200
Varisbes 5 3000 0100
ow variable abels (fpresent) | 3000 0.100
psusize contiuous vaues S o o
Colo by instance casses . S o0
Selecton a0 0200
Select fullrons 10 3200 0200
" 2000 0200
Restore Orignal Order = e .
Report 3 2300 300
14 lrieeetiea L 4400 3200 0200 v
Send Automatialy <
Scatter Plot (Inliers) -0
g L% e,
trsvrginica °
g°.°8f
g ©
°
o o
8°8°0
0!30
°

0z 04 06 08 1 1z 14 16 18 2
petal vidth

22

24

_images/table-widget.png
Info
Sinstances

5 features (10.0% missing values)

Continuous target varizble (no missing
values)

1 meta atirbute (no missing values)

Restore Orignal Order

Variables.

_images/RandomForestRegression-Example2.png
L Random Forest Regression* -8
s Predictions - =
o
Random Forest Regression | MEDV CRIM m
Data: 506 nstances.
predicors: 1 24788 0005 18000
jscheg e 2 22458 0027 0.000
Restore Oognel Order 3 35.400 0027 0.000
4 1473 002 000
Data View
H 24601 008 0000
) Show full data set
3 27160 000 0000
- File Predictions Outut 7 20968 0083 12500
Original data 8 2692 ous 12500
) Predictions 5 17584 0211 12500
7 Probabites 0 19887 01 12500
B 16328 0225 12500
Report <

Random Forest
Regression

Name.

Random Forest Regression

BasicProperties
Number of trees:

] Number of attributes considered at each spit:
] Fixed seed for random generator:

Growth Contral

] Limit depth of indvidual trees:
Do ot spit subsets smaler than:

Apply Automatically

_images/LiftCurve-stamped.png

_images/Color-Example-2.png
File

Edit

File

et

Options

Help

o) — @

‘Scatter Plot

Showlegend

[show gridines.

[Show al data on mouse hover
Show dass densty

[Label only selected points:

Q

Send Automaticaly

Scatter Plot

Save Image Report

_images/SelectRows-Example.png
File

&/
.a

Edit

View

Widget Options _Help

=)

Select Rows*

101 instances (no missing values)
16 features (no missing values)
Discrete dass with 7 values (no
missing values)

1 meta attrbute (no missing values)

Variables.

18 instances (no missing values)
10 features (no missing values)
Discrete dass with 2 values (no
missing values)

1 meta attrbute (no missing values)

Variables.

_images/SieveDiagram-Titanic.png
L] Sieve Diagram

Dsex | x [@ survived

ves

expected 318.17 (14 9
observed 126 (6 %)
N=201 female male

6.87, p=0.000 sex

save Image Report

_images/Classification-Tree-SimpleSchema.png
@ unitled” - o x
Options Help

D)\< “
i Tree Viewer

File e

Fie

& Cassfication Tree

LS B2 Tree Viewer - O

Classiication Tree X Tree
e 9nodes, Sleaves
[Gassiicaton e I setosa

= 32.3%50/1%0 @)
Induce binary tree petal length
Min. number of nstances i leaves: 2
<1.900 —— 1w

Do ot spitsubsets smaler than: SE = =

Stop when majoity reaches [%]: o5 2 0.0% 50/100 @y

Liit the mavinal tree depth to: 005

petal width
w
>1.700 <1700

Apply Automatically

<1500

Save Image Report

_images/Nomogram-Example.png
LX) Data Table

eoce @ untitied o
2201 instances (no missing Seas = &2
Vailles)’ adult male
3 features (no missing values) it e
Discrete class with 2 values (no it e
missing values) adult male
No meta attributes. adult male
adult male
Variables adult male
Show variable labels (i present) L L
| Visualize continuous values Cod L
Color by instance classes. adult male
adult male
Selection adult male
Select full rows adult male
adult male
Data Table | Restore Original Order | adult male
e0e Nomogram male
Target class male
male
[0 ?
? Scale 20 5 10 05 00 05 10
53) Point scale
ped O Log odds ratios
. Diply fets female male
isplay features o b o
for™
ez h ot | i
status. oO—t—
Sortby: | Absolute importance [crew
Continuous features: 1D projection & child adult
B age — o
o 0 20 0 a0 w0 20
B e
Prohabilities {3) 10 20 40 60 80 90

| saveimage | | Report

_images/DataTable-Schema.png
O —-=
- @) ===(8

o

0 Data Table Data Table (1)

File (1)

_images/DistanceMap-Example.png
L Distance Map*
File Edt View Widget Options Help

Scatter Plot

A
A
Distances
> d

Distance Map

‘Scatter Plot

Annotations

Attrbute names.

cholesterol
colored

Send Selected Automatcaly

major vess:

Save Image. Report

_images/distance-map.png

_images/ConfusionMatrix-propTrue.png
Actual

Iris-setosa
Iris-versi
ris-virgini

b3

Predicted

Iris-setosa Iris-versicolor Iris-virginica

1000%
00%
00%

50

00%

7%

13%

53

00%

64%

B6%

a1

g 8 8 m

150

_images/paint-data.png

_images/regression-tree-viewer.png

_images/NearestNeighbors-example.png
~

@ Nearest Neighbors*

s O

Predictions Data Table

Nearest Neighbors

Test& Score

Mean Leamer

Mean Leamer

Name.
Name.

Nearest Neighbors

Mean Learner

Neighbors.

Report

Apply Automatically Number of neighbors:

Metric:

Apply Automatically

=
Info
506 nstances (no missing values)

13 features (no missing values)

Continuous target variable (no missing
values)

1meta attrbute (o missing values)

Variables

Show variable labels (f present)
] isualize continuous vaiues

Color by instance dasses.

Selection
Select full ows

Restore Origial Order

Report

Send Automaticaly

Samping
O Cross vaidation
Number of folds: 10+

Statied

© Random samping
Repeat rainfest: (10~
Traiing et sze: [66% +

Statied

O Leave one out

(® Teston train data

O Teston test data

Data Table a

MEDV Nearest Neighbors CRIM ™ ~
T+ R 21780 0006 1800
2 i 200 0027 000
s s 25360 0027 000
4 [s 26060 0032 000
N 2710 00 000
o Dm0 2710 0030 000
. 20880 008 1250
s i 19.100 o1s 1250

o teso 18400 021t 1250
0 [a0 19480 01m 1250
1 a0 19280 0225 1250
1 [a0 2000 o7 1250
1 a0 24340 0004 1250
1a EEEE Gnaml 0 060 om ¥
< >
Test & Score - =
Evaluation Resuls

Method MSE RMSE MAE R2

MeanLeamer 84420 9188 6,647 0,000
Nearest Neighbors 23.967 48% 3375 0.716

Report

_images/tree-viewer-selection.png
& Scatter Plot. - o x
s Dsta
@ untitied* - o X axsx: | @ petallength - ow
24 oo
Fie Edt View Widget Options Help =
v M @amooo o
Informative Projections| 2 o o
@ - i amo o
(0] St contiuous vabues t @m oo
Data Table @O O
) points 18 @O o0 O
Color: Biris - o e
ClassificationTree Tree Viewer Label: | (lolabels) - 16 e o
e Shapes | (Same shape) B ° emen
File Scatter lot Soe: |Gamesize) o g o ® o o
. 1 H o amm
B Tree Viewer - o x cpmatye L QT ®@eo o
Tree . e ®
9nodes, Sleaves Plotpropertes 1 e ®
Tris-seosa ‘Show legend Ps
Dislay 3% SO/150 @)] Show gridines 08 .'""""“
Z 1 petallength 0] Show al data on mouse hover .'"' s
e 1 s o0 - 1o (00 show lass ity 06 ¢
) 1ris-ver sicolor] Label only selected points
b SEET M 50.0%, 50/100
Edge width: [Relative to parent W’ ‘Zoom/Select 04] OGDO
Target dass: [Nane -] Data Table - a X
— Info
- Selected sepallength sepalwidth petallength | pe.
4 featres (no missng vaues) 1 fissoNo 5100 3500 1400 ——i
Dscete dass ith 3 values (10 . O e s o
<4.900_ >4.900 J)
: = Imeta atrbute (64.0% missng 3 lsetosa | No 470 3200 1300
Fis-vrginica values)
wros g 4 rssetosa No 4500 3100 1500
s _ s e o0 s
: ety | S o 0w
Dvesimerirmrie | N w0 o
s | | eom o e o0 s
N w wm
o s o 50 310 13m0
n [- sa0 370 13m0
[- a0 30 16
- [- P 3000 1am
= v o sm e
‘Send Automatically < - >

_images/kMeans-stamped.png
Apply Automatically

_images/DataSampler-Example.png
@ Data Sampler* ==

Scatter Plot - =
A Data ;
x| @peawdth ~ © Iissetosa 0.0
- 0,0
D D: = petallength _ + Iis-versicolor ~
Iris-virginica o -
Score Plots. . . .
scater ot s 0% , 98
File cater Plo Stterng: 0% oo 209
= 2] ater contiuous vakes ° o 809°
o 8-,
o o. " Q
§ = s0 . 0a8 8o
go,ogf8 8o
oo [@i E s 8°0g%8
Label: (No labels) -
Shape: | (Same shape) - -
D size: (same size) - %
-
Symbol sze: H
Data Sampler Data Tatle — g
PotPropertes
‘Show legend 3
o ——] show griines
.] Show al data on mose hover
Cutputting 10instances. [EE T —
(0] Label oy selected points 2
Samping Type o o
) Fied proporton of catas Zoom/selct ogo o
NERE 8880
o
Fixed sample size. 1o
e [0 d Automstl 07 0% 05 08 1 1z 17 16 18 ¢ 22
o
] Sempie vithreplacement Save Image Report L=

Cross valdation
Number of fods: |10
selected fold: |1

Boostrap.
Optons

] Repicable (deterministic) samping
[stratify sample (when possble)

Report Sample Dat

_images/excel-with-tab1.png
H o o = Sampledct - Bxcel 2@ - 0 x
HOVE NSHT PAGELAYOUT FORMULAS DATA REEW VEW ADDINS Teaw
B - ignore v
A B C E F G H
1 [function gene spo-early heat 0 heat 10 heat 20
2 d s c c c c
3 |meta meta class. ignore. nore
4 |Proteas 'YDR427W 0.301 0.546 -0.009 0.024
5 |Proteas 'YGLO48C 0.208 -0.061 -0.039 0.003
6 Resp 'YBRO39W -0.179 -0.219 -0.097 -0.011
7 |Ribo YKL180W -0.085 -0.161 -0.061 -0.265 -0.419
8 Ribo 'YHR021C -0.216 -0.253 -0.228 -0.168 -0.228
9 |Resp 'YDR178W 0.017 0.07 0.058 0.286 0.205
10 |Resp YLLO41C 0.115 0.033 0.262 0.054
11 |Resp 'YORO65W 0.005 -0.023 -0.038 0.222 0.088
12
13 =
Untitedsab | @ [l — |

_images/select-cols-simplified-header.png
Info
Sinstances
2 features (12.5% missing values)

Continuous target variabl (12.5%
mising values)

2meta atributes (o missing values)

Restore Orignal Order

Variables.

_images/LogisticRegression-example.png
File Edit View

o
Data Sampler ?

Information
435 instances n nput data set.
Outputting 305 nstances.
‘Samping Type

(® Fixed proportion of data:

O Fixed sample size:
Instonces: [1
[sample with replacement

O Cross vaiidation
Number of fods: |10

2
seectedfodt |1 e

© Boostrap

Avalable Varizbles

Fiter

Widget

Logistic Regression*
Options _Help

Ve

ogistic Regression

Features

@ handicapped-infants

@ waterprojectcostsharing
@ adoption-of the-budget resc
@ physician-fee-freeze

@ el-salvador-aid

@ refigious-groups-in-schools
@ anti-satellte-test-ban
 sidtomnicaraguzn-contras
& mcmissile

@ immigration

@ synfuel-corporation-cutbac

@ Logistic Regression
@ Logistic Regression(republican)
@ Logistic Regression(democrat)

Target Varizble

@ party

Meta Atirbutes.

Send Automaticaly

&)

Showlegend

[show gridines.

[Show al data on mouse hover
Show dass densty

[Label only selected points:

Q

Automaticaly

Report

e

Logistic Regression

Apply Automatically

Scatter Plot

_images/adaboost-classification.png

_images/AdaBoost-stamped.png
ElS
1,00000 [

Apply Automatically

_images/TestLearners-stamped.png
Evaluaton Resuits @

Method AUC CA F1 Precision Recall
NaveBayes 0697 0769 0579 0704 0452
Clasification Tree 0672 0783 0516 0927 0357
Logistic Regression 0700 0776 0583 0732 0484
svm 0547 0554 0433 0367 0526

O Leave one out
O Teston train data
O Teston test data

Target Class @

(Average over dasses)

(2] Report

_images/PurgeDomain-example.png
Opacity:

Purge Domain*

Edtt View Widget Options Help

]

5

Plot Properties
Showlegend

[show gridines.

[Show al data on mouse hover
Show dass densty

[Label only selected points:

ZoomSelect

3

VARISY

Send Automaticaly

Save Image Report

Scatter Plot

8080°8808482280¢ o

Distributions

joseccecceoocenced

0000288 80838¢

ieesBceseee

Features
Sort discrete feature values
Remove unused feature values

[¥] Remove constant features.

Classes
‘Sort discrete dass variable values.
Remove unused dass variable values

[¥] Remove constant dass variables

Meta atirbutes
Remove unused meta attribute values.

[¥] Remove constant meta attributes

Statistcs
Sorted features: 6
Reduced features: 5
Removed features: 2.
Sorted dasses: 0
Reduced dasses: 0
Removed dasses: 1
Reduced metas: 0
Removed metas: 0

Report

Apply Automatically

sex

@ copital-gain
@ capitaloss
@ hours-per wes
=

™
Variable:

@ age

& workelass

@ folwgt

B marital-status.
@ occupation
@ reltionship
race

@ sex

@ copital-gain
@ capitaloss
@ hours-perwesk
@ native-country

Precion
2
[Bin continuous variables into 10 bins

Group by
@ sex
[show relatve frequencies

Show probabiites: (None)

Save Image

Distributions

©Fensie
O

@ relationship
e

_images/box-plot-example2.png
Variable:
L

@ sepal length
@ sepalvidtn

@ petallength
@ petsl wickh

@ is

Fie Edit View Widget Options Help

37567 £ 17585
1

=

1.000
Classification Tree Classification Tree.

Box Plot (1)
Viewer

44109 £0.5062
Variable:

@ sepal length
@ sepalvidtn
@ petallength
@ petsl wickh
@ is

5400 3.600 3.800 4.000 4.200 4400 4.600 4.800 5000 5200 5.400

14640 £0.1715
|

—_f——

14000 15000 16000

1000 1100 1200 1300 1400 1500 1600 1700 1800

No comparison
® Conpare medians

Compare means

Save Image

_images/VennDiagram-Example1.png
File Edit View Widget Options Help

B Select Rows (age)

E Conditons
@ age

=)

size)

I Data Table

instances.
9 festures (0.6% missing values)
Discrete dass with 2 values (no
mising values)

Nometa atirbutes.

Variables.

breast-cancer
51 (ak: 59)

_images/random-forest.png

_images/PurgeDomain-stamped.png
Sort discrete feature values
Remove unused feature valves.

Remove constant features

Removed metas: 0

Report e

Apply Automatically @

_images/DistanceMap-Highlighted.png
Sement Srtng
(Custering
Colors

I oranges

Low:

o)

Annotations

Attrbute names.

major vessels colored

SThy exercse

maxHR.

cholesterol

age

restsep

STby exercise

Send Selected Automatcaly

major vessels colored

Save Image. Report

_images/scatter-plot.png

_images/test-learners.png

_images/Color-palette-numeric-stamped.png
& Color Palette
Saved Profies @
[Defauit

Gradient palette @

_images/spreadsheet-simple-head1.png
x

<

H o o = ‘sample-headxisx - Excel 2@ - 0
HOVE NSHT PAGELAYOUT FORMULS DATA REVEW VEW ADDINS Teaw
Al A mD#function
B C D E F G H
S#gene spo-early spo-r c#heat0 i#heat10 i#heat 20
'YDR427W 0.301 0.546 -0.009 0.024
'YGLO48C 0.208 -0.061 -0.039 0.003
'YBRO39W -0.179 -0.219 -0.097 -0.011
YKL180W -0.085 -0.161 -0.061 -0.265 -0.419
'YHR021C -0.216 -0.253 -0.228 -0.168 -0.228
'YDR178W 0.017 0.07 0.058 0.286 0.205
YLLO41C 0.115 0.033 0.262 0.054
'YORO65W 0.005 -0.023 -0.038 0.222 0.088
Untitiedtab | @ [E— 1

_images/svm-regression-example1.png
L 'SVM Regression*
File Edt View Widget Options Help

|

s D

‘SVM Regression

0,001000 %

Mean Leamer

Apply Automatically

Apply Automatically

Original data
¥ Predictons
¥ Probabiites

Report

_images/naive-bayes.png

_images/SilhouettePlot-Example.png
o Silhouette Plot*
File Edt View Widget Options Help

Silhoustie Plot

PlotPropertes
[¥] show legend

[show gridines.

[Show al data on mouse hover
[Show ciass density

(] Label only selected points

Q

Send Automaticaly

Save Image Report

petal icth

Scatter Plot

© Irissetosa
® Iris-versicolor
© Iris-virginica

_images/SaveClassifier-save.png
File name:

Saveastype:

Pickle files (" pickle *pck)

_images/mean-learner-example1.png
L Mean Leamer* =

€ Predictions - =
o
Mean Learner MEDV ~
Data: 506 nstances.
predictors: 1 1 253
0 — Tesk: Regression N s
) e | A
. st 4 253
e jew
Prediciions Data Table . e
[Show full data set
3 253
ouput 7 253
Original data 8 253
¥ Predictions e 22533
¥ Probabities 0 253
A Bl 253 .
Report < >
Wean Leamer
=] Data Table - =
o
MEDV Mean Learner CRIM N ~
506 instances (no missing values)
13 features (1o misng vakes) [253 0005 18000
o et coresry |2 [0 . pve 000
Aoy Automatialy Lmeta stoiute (omssngvaues) |3 | 34700 253 0027 0000
4 [s 253 0032 0000
arisbes N 253 00 0000
Show verbelabe fpresend) || g 253 0030 0000
] Viaze contruous vooes . s oo o
Colo by instance casses
s i 253 o1s 12500
Selection s [iesn 253 021t 12500
Select fullrons 0 [a0 253 01m 12500
1 a0 253 0225 12500
Restore Orignal orcer
1 [a0 253 07 12500
e 1 a0 253 0004 12500
1a EEEE Gnaml LS 060 oo ¥
Send Automatialy < >

_images/venn-identifiers-stamped.png
119 (ak: 122)

_images/RandomForestRegression-stamped.png
teme @

Rendom ForestRegression

BosicPropertes @

Nuber of res:

] Number of attrbutes considered at each spit:
] Fixed seed for random generator:

Growth Control @
] Limit depth of indvidual trees:
Do not spit subsets smaler than:.

@ Apply Automatically

_images/preprocess-stamped.png
Preprocessors @

[Discretize Continuous Variables

st Continize Discrete Variables
[Impute Missing Values

[T Select Relevant Features.

7] Select Random Features

A Normalize Features

< Randomize

 Principal Component Analysis
T CUR Matrx Decomposition

Send Automaticaly

[Discretize Continuous Variables

(O Entropy-MDL discretization

® Equa requency dsretzaton

O Equal width discretization
Number of nterval (or qua width/requency)

Y s

(O Remove continuous atributes

Icontinize Disrete Varizbles

(® One attrbute per vaive

O Most frequent s base.

(O Remove all discrete attributes
(O Remove muitinomial atiributes
O Treat as ordinal

(O Divide by number of values

(impute Mising Values:

® Average/Most frequent
O Replace with random value
(O Remove rows with missing values.

Iselect Relevant Features
Score

Information Gain

Stateay.
(® Fixed: i)

Percentle: 75,00%

Iselect Random Features.

Stateay.
® Fixed 7

O percentage 75,00%

Report

_images/ConfusionMatrix-Example.png
=
Info

15 instances (no missing values)
4 festures (no missing values)

Discrete dass with 3 values (no
mising values)

tmeta attrbute (o missing values)

Variables
Show variable labels (F present)
Visualze continuous values

Color by instance dasses.

Selection

Select full ows

Restore Origial Order

Report

Send Automaticaly

Data Table -
AisData

i ifsNaive Bayes) sepallength sepalwidth petallength petalwidth =TT
R s 50 200 1500 159
> (NG -viics 100 2 o i oz [T ©
3 [iisviginica | ris-versicolor 2200 5000 1500 Score Plots
+ i 3100 a0 10 - e
5 [iisversicolor | irs~virginica 2100 4700 130 (0] St continuous values
6 iswvirginica lis-versicolor 2200 4800 1.800
7 [iisviginica | ris-versicolor 2700 4900 1300 Ponts
8 [lisversicolor Iis-virginica 3400 4500 1600 Color: |)= hd
o [lisvirginica _ lis-versicolor 250 4500 1700 (Volabels) -
10 iswirginica _ is-versicolor 2800 5100 1500 (Sameshope) ~
11 [isviginica | ris-versicolor 2000 4900 1300 Gamesz)
12 R il 30 10 1 S —
13 is-versicolor_ Iis~virginica 3200 4500 1500 Opacity: 1
14 [iisverscolor | Irs~virginica 2000 4400 1400
15 [iisversicolor | rs~virginica 2000 5000 1700 GRS

Showlegend
[Show gridines.

Learners

Naive Bayes
Classifcation Tree

Show

Number of nstances

Select

Select Correct

Select Misdassified

Clear Selection

Output

(] Probabiites

Send Automaticaly

Report

setosa

Preicted
Irs-setosa Irs-versicolor Irs-virginica
50 0 0
0 2 e
0 7 s

50 49 51

petal length

Scatter Plot

o
) Iris-setosa
[— ©0°
Vekonica o ©
o o
o6 909 ¢
0,0
o g go o
s 8
gooo8g ©o
8
°
o o
8%
B3¢
©0o
R T R % N

petal vidth

_images/concatenate.png
BH

_images/PythonScript-round.png
o) (@) i

File

Python Script BoxPlot

Python sarpt

import numpy as np

out_data = in_data.copy()

np. round (out_data.X, 0, out_data.X)

print (out_data)

Console

[14.000, 6.000, 2.000, 20.000, 95.000, 2.000, 1.000,
1.000, 1.000, 8.000, 1.000, 2.000, 740.000 | 31,
[13.000, 4.000, 2.000, 23.000, 102.000, 2.000, 1.000,
0.000, 1.000, 7.000, 1.000, 2.000, 750.000 | 31,
[13.000, 4.000, 2.000, 20.000, 120.000, 2.000, 1.000,
0.000, 1.000, 10.000, 1.000, 2.000, 835.000 | 31,
[13.000, 3.000, 2.000, 20.000, 120.000, 2.000, 1.000,
1.000, 1.000, 9.000, 1.000, 2.000, 840.000 | 31,
[14.000, 4.000, 3.000, 24.000, 96.000, 2.000, 1.000,
1.000, 1.000, 9.000, 1.000, 2.000, 560.000 | 3]

>>>

_images/feature-constructor1-stamped.png
(@ Petal length square = petal length™2
8 sep length smaller = 01f sepal_length < 6 lse 1 sepal length < 7 else 2

_images/Nomogram-NaiveBayes.png
Target class @
no B

Scale @

Point scale
© Log odds ratios

Display features

Al
© Bestranked: © 10
Sortby: Absolute importance [

Continuous features: 1D projection &

Save Image Report

Nomogram

1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5
Points +
female male
sex e EE—]
first second third
status ——0
crew
child adult
age — 0
Total -30 -20 -|‘.0 0.0 |.‘0 2‘0
=@
Probabilities (%) 0 20 40 60 80 90

_images/lift-curve.png

_images/NearestNeighbors-stamped.png
Apply Automatically

_images/ScatterMap2-stamped.png

_images/svm-regression.png

_images/LoadClassifier-example.png
Load Classifier*
Edtt View Widget Options Help

o

Ly

Load Classifier

_images/ConfusionMatrix-Schema.png
Classification Tree

_images/TestLearners-example-classification.png
Fie Edit View Widget Options Help

e e
5 0)—® i

Select Columns Logistic Regression 0.700 0.776 0.583 0732 0.484
B 0547 0.554 0433 0367 0526

ROC Analysis

O Leave one out
O Teston train data

O Teston test data
Test& Score

Target Class.

(Average over dasses)

Report

Classification Tree

ROC Analysis

Logistic Regression

Select Columns

Send Automaticaly 0 3

FP Rate (1-Spedificty)

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_images/distances.png

_images/File-stamped.png
o @

150 nstance(s), 4 feature(s), 0 meta atirbute(s)
Classification; iscrete clss with 3 values.

_images/manifold-learning.png

_images/spreadsheet1.png
HS & s samplesx - Excel 7 E - 0 %X
HOME INSIRT PAGELAYOUT ~ FORMULAS ~ DATA REVIEW VIEW ADDANS TEAM
Al - function A4
A B c D E F G H
1 [function _Jgene spo-early heat 0 heat 10 heat 20
2 Proteas 'YDR427W 0.301 -0.009 0.024
3 Proteas YGLO48C 0.208 -0.061 -0.039 0.003
4 Resp 'YBRO39W -0.179 -0.219 -0.097 -0.011
5 |Ribo YKL180W -0.085 -0.161 -0.061 -0.265 -0.419
6 Ribo 'YHR021C -0.216 -0.253 -0.228 -0.168 -0.228
7 Resp 'YDR178W 0.017 0.07 0.058 0.286 0.205
8 Resp YLLO41C 0.115 0.033 0.262 0.054
9 Resp 'YORO65W 0.005 -0.023 -0.038 0.222. 0.088
10
11
12
13
Untitiedtab | @ [—

_images/k-NearestNeighbours-stamped.png
Apply Automatically @

_images/BoxPlot-Continuous-small.png
Iissetosa: 14640 £0.1718
i

. _! 0
— | —
14000 15000 16000
(5] (¢]

_images/HierarchicalClustering-Example2.png
Pruring

O Max depth:

Selection

Append cluster IDs:
Name: [Cluster
Place: | Meta variable

Send Automaticaly

Save Inage Report

Hierarchical Clustering*

(e

Distances (rows)
Clustering (rows)

Scatter Plot

0.18 0.6 014 0.12 008 006 004 002

Ins-virginica
Ins-virginica

Iis-versicolor
Ins-virginica

Ins-virginica

Ins-virginica

Ins-virginica

Ins-virginica

Ins-virginica

Ins-virginica

Iis-versicolor
Ins-virginica

Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Iis-versicolor
Ins-virginica

Iis-versicolor

0.8 0.6 0.4 0.12 008 0.06 004 0.02

AxisData
petalvidh
petallength v
Score Plots.
0%

] Jitter continuous values

Points
Color: s B
Label: |(lolabels) =

Shape: |(sameshape) v
Sze: | (Semesize) B
Symbol size:

Opacity:

Plot roperties:

Showlegend
[show gridines.

[Show al data on mouse hover
[Show ciass density

] Label only selected points:

ZoomSelect

B O Qf|:

Send Automaticaly

Save Inage Report

O 00
Q0 O

[efecoesole]

Scatter Plot

© Irissetosa

Iis-versicolor

Insvirginica

0

[e)esoXe]
o
o

°

@
@ o
S000

o

04 06 08 1 12 14

petal vidth

2

°
C

000 ©

feose

_images/DistanceTransformation-stamped.png
O Tointerval [, 1
O Sigmoid function: 1/(1-+exp()

Inverson @

_images/k-means.png
&3

_images/file.png

_images/purge-domain.png

_images/data-info-stamped.png
Data SetSize

Datais stored in memory

Report

_images/pythagorean-tree.png

_images/Pythagorean-Forest-stamped.png

_images/Discretize-All-stamped.png
DefaitDisaretizaton @
O Equal-frequency discretization

Entropy-MDL discretization
O Remove numeric variables.

Nom, of intervals: | 315
O Equal-width dscretization

Individual Attribute Settings @

@ age:21.50,25. 50,2950, 35,50, 4350, 5| (® Defauit
@ foiwgt: <removed> e
@ education-num: 8.50, 9.50, 10.50, 1250, 13.5|
@ capital-gain: 57.00, 3048.00, 3120.00, 243,50
@ copitoloss: 1551.50, 156850, 1820.50, 1g62,| & Eauelfreauency dscretzation
@ hours-per-week: 34.50, 33,50, 4150, 49,50, 6| O Equal-width discrtization

Nom. of ntervals: | 53

) Leave numeric

O Entropy#DL discretization

O Remove atrbute

_images/File.png
File: | sample.xis
) URL:

nfo

8 instance(s), 6 feature(s), 1 meta attribute(s)

Data has no target variable.

Columns (Double click to edit)

1 function nominal
spo-early @ numeric
spormid @ numeric
heat 0 @ numeric
heat 10 @ numeric
heat 20 @ numeric

gene 8 string

feature
feature
feature
feature
feature
feature

meta

Proteas, Resp, Ribo

Browse documentation data sets

_images/Pythagorean-Tree1-stamped.png
Display Settings
Depth

Target dass None.
S Normal

Log scale factor

Plot Properties

_images/RandomForestRegression-Example1.png
Random Forest Regression®

Edtt View Widget Options Help

Method MSE
Random Forest Regression 12.936
Linear Regression 2310
Mean Learner PN

O Leave one out

Test& Score. O Teston train data
Random Forest 5 -
Regression Teston test dats

Report

Linear Regression Linear Regression
Name
Rendom ForestRegression
BosicProperties
Wean Leamer N of reess
] Number of attrbutes considered at each spit:
] Fixed seed for random generator:

Growth Control
] Limit depth of indvidual trees:
ot spit subsets smaler than:

Apply Automatically

Apply Automatically

_images/map-regression.png
BRI E

Symbol size:

Data Nining Fruitful & Fun

_images/Predictions-ExampleScatterplot.png
Showlegend

[show gridines.

[Show al data on mouse hover
[Show ciass density

] Label only selected points:

Q

Automaticaly

Report

_images/MDS-Example.png
MDS Optmization

MDs*

Maxiterations: 300

Iniaization:

PCA (Torgerson)

‘

Refresh:

Every 25 steps

‘

Start

ins

Same shape

Sz [Samesie -

Label: [Nolabels -

[Label only.
Symbol size:
Symbol opacity:

Show similr pairs:

selected ponts

0

0

Send selected

automaticaly

Send Selected

Save Inage.

Report

Data Table

=
Info

76 instances (no missing values)
6 festures (no missing values)

Discrete dass with 3 values (no
mising values)
Nometa atirbutes.

Variables
Show variable labels (F present)
Visualze continuous values

Color by instance dasses.

Selection

Data Table - =
sepalwidth petallength petalvidth X v
2500 4000 1200 0202 -03%
270 4200 1300 032 0478
3000 4200 1200 0318 0177
290 4200 1300 0367 0268
290 4300 1300 0821 0073
4100 1300 0288 0320
5100 1900 1432 0530
5500 1300 1980 0267
5500 1300 235 a3
5100 2000 1584 0231
5300 1900 179 0210
5500 2100 215 0275
5000 2000 136 03
5100 2400 1562 849
5300 2300 1964
BEeET 5.500 1.800 1949 -0.001
OEETD 5.000 ﬂ 1275 -0873
4900 2000 123

_images/Distributions-NoClass.png
Veriable:

@ crRM
@
@ INDus
@ cHas
@ Nox
@rM
@ AGE
@ois
@ raD
@ TAx
@ PTRATIO
@s

@ LsTAT
@ MmeDv

Frequency

Show relative frequendies —

Show probabiites: (None) R25-mB PABI-6TH
’m

Save Image

_images/Classification-Tree-stamped.png
< Classification Tree

Name.

[Classfication Tree

Induce binary tree

Min. number of nstances i eaves: 2

Do not spit subsets smaler than: s

top when majority reaches [%]: o515

Linit the maxinal tree depth to: 100 %

‘Apply Automatically

_images/BoxPlot-Continuous-stamped.png
Iris-setosa: 1.4640 £0.1718 @
i

e

4.0000

43500 46000

Irsirginica: 5.5520 £0.5463

—

_images/edit-domain.png

_images/select-columns.png

_images/PCA-stamped.png

_images/PythonScript-Example3.png
Info
Exeaute python scrt.
Input variables:
*in_data
in learner
*in_dassifier
*in_object
Output variables:

“out_data
*out learner
~out_dlassfier
*out_object

Library

untitled*

d
s camus f—p—

Python Saipt

Ia) Corpus — in_data (l‘) out_object— Corpis (

print ('Running Preprocessing ...')

tokens = [doc.split(' ') for doc in in_data.documents]
print('Tokens:', tokens)

out_object = in_data
out_object.store_tokens (tokens)

Word Cloud

Info

 documents with 45 words

Cloud preferences.

Color words

Wiords tit:

Regenerate word doud

Wiords & weights.

Console:

tet

+1[= [Update | [More.

Running script:

Running Preprocessing ...

Tokens: [['Human', 'machine', 'interface', 'for', 'lab',
'abc', 'computer', 'applications'l, ['A', 'survey', 'of',
'user', 'opinion', 'of', 'computer', 'system', 'response',
'time'], ['The', 'EPS', 'user', 'interface', 'management’,
'system'], ['System', 'and', 'human', 'system',
'engineering', 'testing', 'of', 'EPS'], ['Relation', 'of',
'user', 'perceived', 'response', 'time', 'to', 'error',
'measurement'], ['The', 'generation', 'of', 'random',
'binary', 'unordered', 'trees'l, ['The', 'intersection',
‘graph', 'of', 'paths', 'in', 'trees'l, ['Graph', 'minors’,
'IV', 'Widths', 'of', 'trees', 'and', 'well', 'quasi',
‘ordering'l, ['Graph', 'minors', 'A', 'survey'l]

>>>

Weight Word
7ot
3 user
3 system
3 trees
3 The

2 response

2 computer

Save Inage

Word Cloud - =

applications

management
engineering

" machine

random P interface
oF@Sponse © _ testng g o,

Graph A USer timegps wor

ordering

wmtreesof The =" v

human computer

ave AN system quast D1
s minors SUrvey Reaton

well intersaction
generation
measurement

_images/data-table.png

_images/Concatenate-Example.png
o Concatenate*
Data Table (A+B)

Fie it View Widget Options Help
6 instances (no missing values)
16 features (no missing values)
Discrete diass with 7 values (no

mising values)
Data Table (4+8) 1 meta attrbute (no missing values)

hair

Variables.

Data Table (A+B+C)
= Data Table (O
o
11instances (no missing values) hai
16 features (no missing values)
Dt cass vith 7 vaes (10

missing values)
Data Table (C) 1 meta attrbute (no missing values)

Variables.
‘Show variable labels f present)
Visualize confinuous valves
Color by instance dasses

=2 Data Table (A+B+C)

o -
17instances (no missing values) peir
16 features (no missing values)
Discrete dass with 7 values (no.
missing values)

1meta attribute (no missing values)

Variables.

Domain Merging
Vihen there is no primary table, the domain shouid be:.
(® Union of attrbutes appearing i all tables.

(O Intersection of atiributes in al tables.

The resultng table il have dlass orly f there s no
confict between input dasses.
‘Source Identfication

[Append data source IDs
Feature name: | Source

Place: Clss atirbute

_images/image-viewer-example1.png
=
Info

15 nstances (no missing values)
5 features (no missing valves)

Discrete dass with 3 values (o
mising values)

2meta atirbutes (no missing values)

Variables
Show variable labels (F present)
Visualze continuous values

Color by instance dasses.

Selection
Select full ows

Restore Original Order

Report

Send Automaticaly

Image Viewer*

Image Viewer

File

0

oataTabe
Data Table =
e = oss | case | preder
e padagesc
=
[P : 0
R - g 0 :
= g : :
= g : :
R - im0 0
R o im0 :
B cicen g 0 0
- g : 0
o ORI v e : :
10 B auck im0 0
1 ot im0 :
L ° °
—

http//

Info

Done:
15images.

Image Flename Attrbute

B images <

Tite Attrbute
@rene

Zoom

Save Inage

Send

_images/svm-classification.png

_images/calibration-plot.png

_images/random-forest-regression.png

_images/ImageViewer-stamped.png
= Image Viewer
nfo

Done:
15images

Image Fiename Attrbute g

@ meges <

Tite Attrbute
@rene

Zoom

savelmage @

Send (s

_images/File-Workflow.png

_images/DataTable-Example.png
L Data Table* - =

0 v

intted | _untited

E
214instances (no missing values)
e 9 features (o missng vakes)
P = =)
e missing values)
Nometa teibutes
i} Data Tadle Data Table (1)
e Variables
File (Glass) show variable labels (if present)
sz contruous vabes
lor byt casses
seectin
=] Data Table (1)
nfo RI Nz M
15 instances (no missing values) g 2 000
9 features (no missing values) 18 1520 12380 0000
Dt o e o : B 1521 o0 1610 T
g abes) =
Nometa teibutes s B 1321 =g 030 Restore Orgnal order
1518 a0 2350
4 8 Report
Vs s B 1518 170 2410
Show variblelabels (fpresen) | ¢ g 1518 14.460 2200 d Automatical
Vuaize contuous vabes .- = = =
Eop et : B 1513 14400 1740 1540 7455
S 5 1518 1450 om0 1740)
sectulrows wfl 1518 1150) 2080 R
" 1520 1460 00 060 o)
2 1511 17380 00 030 710
N 1511) 3200 1810 810
ul isis e 3260 220 =
=B = o) 330 20)
Restore Orgnal order
Report
i Atomatical < >

_images/RandomForest-stamped.png
Name @
[Random Forest Cassification

BasicPropertes @
Nuber of res:
] Number of attrbutes considered at each spit:

] Fixed seed for random generator:

Growth Control @
] Limit depth of indvidual trees:
Do not spit subsets smaler than:.
(-]

° Apply Automatically

_images/CN2RuleViewer-stamped.png
IF conditions THENclass Distribution Probabilites Quality
sex=female AND status=first AND agezad.. survived=yes 10,11 033:067
sex=female AND statuss third AND agez... survived=yes 10,13] 007:
sexzfemale AND status=second AND age... survived=yes 10,111 008:0:
sexzfemale AND status=second survived=no 1154,14]
status=crew AND sex=female survived=yes 3,20
status=second survived=yes 113,80]
sexzfemale AND status=third AND age=... survived=no 1387,73]
sex=female AND status=first survived=yes 14, 140]
statuszthird AND agezadult survived=yes 10,51
status=crew survived=no __[670,192]
seczfemale AND statuszfirst survived=no 135,131
status=first survived=no 1118, 571

agezadult survived=no. 017,14

TRUE survived=no. 189, 76]

Restore original order @

_images/Rank-Select-Widgets.png
=2 Data Table
Info

03instances

3 festures (0.7% missing values)
Discrete dass with 2 values (1o
mising values)

Nometa atirbutes.

fsmeternarrowin chestpain sjor vessel color
typical ang
asymptomatic
asymptomatic
non-anginsl
atypical ang
atypical ang
asymptomatic

s I

asymptomatic

@ Missing values have been imputed.
Select Atirbutes.
O None

om
Om B chest psin

© sestranked: [3 (2] | @major vessels colored
@ST by exercise

D thal

Becercindang
@macHR

@ slope peak exc ST

@age

gender

Brest ECG

@ cholesterol

@restsep.

Report @fasting blood sugar > 120

Send Automatialy | <

_images/Continuize-Example1.png
9

ﬁ
08
e
&

Edit

Continuize*

View Widget Options Help

3
K Data Table

Continuize.

. Continuize
Mltnoma Atrbutes.
(® Target or first value as base
O Most frequent value as base:
(O One attribute per value
O Ignore multinomial attributes
(O Remove all discrete attributes
O Treat as ordinal
(O Divide by number of values

Confinuous Attributes
(® Leave them as they are

O Normaize by span

(O Normaiize by standard deviation

Discrete Class Attrbute.
® Leaveitasitis

O Treat as ordinal

(O Divide by number of values
(©) One dass per value.

Value Range:
O From-1t01
@ Fromoto 1

Report

Apply Automatically

Data Table
(Continuized)

Info
03instances
18 features (0. 1% missing valves)

Discrete dass with 2 values (no
missing values)
Nometa atirbutes.

Variables

Show variable labels (F present)
Visualze continuous values

Color by instance dasses.

Selection
Select full ows

Data Table

03instances
13 features (0.2% missing valves)

Discrete dass with 2 values (no
missing values)
Nometa atirbutes.

Variables

on varisbe abels (f present)
fsualize confinuous valves.

Color by instance dasses.

Selection
Select full ows

Restore Origial Order

Report

Restore Origial Order

Report

Send Automaticaly

Send Automaticaly

iameter narrowin

chest pain
typical ang
asymptomatic
asymptomatic
non-anginal
stypical ang
stypical ang
asymptomatic
asymptomatic
asymptomatic
asymptomatic
asymptomatic
stypical ang
non-anginal

atnical ana

diameter narrowing age

B

E

é

%

é

é

é

é

H

£
g

_images/DataTable-stamped.png
2
2
2
=
8

MLLL&LLLL
WL;;; LLL
i
Felgfslslelsldlsl s
3
H

m;;;LLLLm

El8lrelelrs

lo
lf

SEEERE

g

Ll
_L_L

_LLLL

8

B

o @
150 instances (no missing values)

4 festures (no missing values)
Discrete dass with 3 values (o

Send Automaticaly

_images/roc-analysis.png

_images/confusion-matrix.png

_images/DistanceMatrix-Example.png
L Distance Matrix* - =

A

0 Distances
File Distance Matrix
A Di. = B
Distances between Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-versicolor lris-versicolor Iris-versicolor Iris-versicolo *
® rons Vivericoor | 2953 29w 0w oo s tms| iow] e om
O coms oversicoor| 2152 248 2233 2am 2m| aew| ane| zew| osi
. isvericoor| 3088 30 329 3oy 3| tsm| iow| s ok
= isersicoor| 3075 2000 36 20w 308 taxl oes| s om
livericoor| 3108 3053 32w 30w saa| es| oes| 4w o0&
Reprt livericoor| 33 328 338 32 33| oss| oms| o 0w

ot sy Wovescolr| a8t ot oo ami oo 2001 2 B [

Wsvescoor|308] 2sm| 31 2m0 3se| uso| o 1w os
tisviginica | | e

Aoply

Irs-virginica 1449 1063 1253
Irs-virginica 1.688 1.187|
Irs-virginica 1183 09%
Irs-virginica 1493 1212

lrs-virginica 2500 193
<

: [None Send Automaticaly

_images/Regression-Tree-Example1.png
Regression Tree*

Edtt View Widget Options Help

0 —@—@

Regression Tree Regression Tree
Viewer

Min.instances nleaves: |2
‘Stop splitting nodes with less nstances than:
Linitthe depth to: 100

Apply Automatically

Regression Tree Viewer

_images/distributions.png

_images/ROCAnalysis.png
o4 3

FP Rate (1-Spedificty)

_images/HeatMap-stamped.png
Mege @
[Merge by kemeans.
Clusters:

Sorting @

e

_images/linear-projection-stamped.png
v

Automaticaly @

Report @

_images/DistanceMap-stamped.png
Annotations €
Attrbute names.

Send Selected Automatcaly

Report @

major vessels colored

STby exercise

cholesterol

_images/silhouette-plot.png

_images/CorrespondenceAnalysis-stamped.png
Component 2 (21.1%)

08
06 04 02 0 02 04 08

‘Component 1(44.9%)

_images/LiftCurve-example.png
File

Edtt View Widget Options Help

i—(L

Test& Score LiftCurve

i

Classification Tree

Test & Score
Evaluation Resuts

O Leave one out
O Teston train data
O Teston test data

Target Class.

(Average over dasses)

Method AUC CA FI Precision Recall
NaveBayes 0704 0779 0590 0735 0492
Clasiication Tree 0683 0791 0539 0931 0380
N 0559 0467 04%0 0361 0762

Report

NearestNeighbors

_images/Color-stamped.png
Discrete Varisbles @

M vis-stosa I iisverscolor [Iisvigiica

_images/DataSampler-Example1.png
File

Data Sampler* =

DataInfo,

&

Data Sampler

@ Datalnfo = =

Data Set Size

Numeric: (none)
Targets

Discrete outcome with 3 values
Meta Atrbutes

Nore.

Location

Datais stored in memory

Report

=
Info
Sinstances (no missing values)

4 festures (no missing values)

Discrete dass with 3 values (no
mising values)
Nometa atirbutes.

— Variabes.
Show variabe labels (fpresent)
Data Tabl (Sample Viualze continuous values
Data) o
Info
1 instances (o missing values)
— 4features (no missng vaues)
Disrete dass with 3 values (ho
mising values)
No meta attrbutes
Data Tatle

(Remaining Data)

Variables

P o

Information
24instances in input data set.
Outputting S nstances.

ce dasses.

Sampiing Type:
O Fixed proportion of dat

® Fixed sample size.
Instances:
[sample vith replacement.

O Cross vaiidation POl
Number of fods:
Selected fod:

© Boostrap

Options
] Repicable (deterministic) samping
[stratify sample (when possble)

Report Sample Dat

Data Table (Sample Data) -8
lenses age prescription _ astigmatic tear rate

+ R prestyopic myope yes normal
2fherd young myope yes normal
sene presbyopic myope yes reduced
4none|prsyopic hypermetiope no reduced

5 jnene | prepresbyopic hypermetrope o reduced

Data Table (Remaining Data) -8
lenses age prescription _ astigmatic tear rate

1 RO resbyopic myope no normal

2 fone | prebyopic myope no reduced

3 Bt young hypermetrope o normal

4 Jherd young hypermetrope yes normal

s one prebyopic hypemnetrope yes reduced

6 fone | young myope no reduced

7 kot young myope no normal

& Boft | prepresbyopic myope no normal

o had | prepresbyopic myope yes normal

10 Boft | presbyopic hypermetrope o normal

11 fnone | presbyopic hypermetrope yes normal

12 fnone | prepresbyopic myope no reduced
13 fpene 1 young hypermetrope yes reduced
14 foft] prepresbyopic hypermetrope o normal

15 fnone | prepresbyopic hypermetrope yes normal

16 fnone | young myope yes reduced
17 faene | young hypermetrope o reduced

18 fnone | prepresbyopic myope yes reduced
19 fnone | prepresbyopic hypermetrope yes reduced

_images/TestLearners-regression.png
O Leave one out
O Teston train data
O Teston test data

MSE RMSE
MeanLeamer 84644 9200
Nearest Neighbors 38676 6219
SVM Regression 66314 8143
SGD Regression 24297 4929

R
6662 0003
4352 0542
5141 0214
329 0712

_images/SaveClassifier-widget-stamped.png
@ Save Classifier
Fie

dphapkis @

_images/ScatterPlotExample-Ranking.png
Scatter Plot

Scatter Plot (1)

ot rapertes
srowegend

] show gridines Plot Properties

[how l ot anmossehver et

[Show diass density [show gridines.

] Label only selected points:] show al data on mouse hover

petal length

Q

Score.

o o
~ 0Q0
109507 petalwidth o °
iio
OO

Send Automaticaly 20947 petal wiicth

Save Image. Report 30919 petal wicth

02 04 06 06 1 12 14 16 18 2 22 24
petal width

409087 petallength

50893 petallength

607107 sepal length

Fiished

_static/minus.png

_static/up-pressed.png

_static/file.png

_images/tree-viewer.png

_static/comment-bright.png

_images/SaveDistanceMatrix-stamped.png
?

Save Distance Matrix

_images/hierarchical-clustering.png

_images/merge-data.png
gl

_images/AdaBoost-Example1.png
File Edit View Widget

Options Help

@]

'S

Test& Score

i

Classification Tree

Ve

Logistic Regression

O Leave one out
O Teston train data
O Teston test data

Target Class.

(Average over dasses)

Report

AdaBoost 0950
Classification Tree 0955

Logistic Regression 0970

_images/CalibrationPlot-stamped.png
]

_images/data-sampler.png

_images/SaveDistanceMatrix-Example.png
Save Distance Matrix*
Options _Help

FA

Save Distance Watix

Distance.
Transformation

A

A

Distance Matrix
(inversion)

Distances

Distance Matrix (Inversion) -0

Iris-setosa Irs-setosa lrs-setosa Iis-setosa Ii-setosa Ifssetosa _Irs-setosa
Iris-setosa -0s] 0510 0648|0141 0616|0520,
Iris-setosa 030 032 -0s8| 1091 0510
Iris-setosa ¥ 0245 0510 -togs| 0265
-oste| 1166 032
0816 0458

Irs-setosa 0995

Irs-setosa

Irs-setosa

Irs-setosa X E 1459|0548

Irs-setosa X 1010 0480

Irs-setosa ¥ 0345 0866

Irs-setosa 0812 030

Irs-setosa X 162 -04%0

Irs-setosa X X sl -6t

Send Automaticaly

_images/sql-table.png

_images/HierarchicalClustering-stamped.png

_images/Majority1-stamped.png
Majority

Apply Automatically

_images/k-nearest-neighbors.png

_images/save-distance-matrix.png

_images/MergeData-Example2.png
B, uoitled eoe Merge Data

Match instances by

Data A Data B
| @ name B | Oname B
DataAnfo DataBinfo
101instance(s) 15 instance(s)
17 variable(s) 6 variable(s)
Merged Data — Data
[Exclude instances without a match
Merge Data DataTable
(Report
Data Table
. ype name images hair feat
101instances naforange3/Orang
File (0O - images) 16 features (no missing values) =
Discrete class with 7 values (no ? 1 o
missing values) http/fiimgu... |1 0
2 meta attributes (42.6% missing https/fiimgu... | 0)
values) httpy/fiimgu... | 1)
http:/fiimgu... | 1)
Variables 2 1)
2 Show variable labels (f present) _ 2 1 0
| Visualize continuous values http:/fiimgu... | 0)
9 Color by instance classes. http:/fiimgu... | 0 0
X 2 1)
Selection] q o)
Select full rows http:/fiimgu... | 0 1
2))
Restore Original Order 2 o o
Report] g o) o)
2))
Send Automatically 2 0 il

_images/SelectColumns-Example1.png
o Select Columns*
File Edt View Widget Options Help

=)

)
" @@

Ll
Data Table (1)
Data Table (1)

d'5'E'EEEE''E'E B EE e

1
i

EREBERENE,
§

20
8

5%

o
8

'§'EEEE

§'5'8'8'8'8'8'8 8

R

o
8

5%

_images/Preprocess-Example.png
L Preprocess*
File Edt View Widget Options Help

=)

=]

Preprocess Data Table
(Preprocessed)

32561 instances.
14 features (0.9% missing valves)
Discrete dass with 2 values (no
mising values)

Nometa atirbutes.

Variables.

Preprocessors.

< Discretize Continuous Variables
et Continuize Disrete Vrisbles
3 Impute Missing Values

T Selct Relevant Features

T Sect Random Features

ipal Component Analysis

T CUR Mitrix Decomposition

(® Fixed: i)

Percentle: 75,00%

Send Automaticaly

g 2

o

A3 388938888

maritalstatus
Maried-civ-spouse
Maried-civ-spouse
Maried-civ-spouse
Maried-civ-spouse
Maried-spouse-absent
Maried-civ-spouse
Maried-civ-spouse
Divorced
Maried-civ-spouse
Divorced
Maried-civ-spouse
Maried-civ-spouse

1H
EN-

Private
Private
Private
Private
Private

Private

56352000
14737200
188146000
59496000

203936000
149640000
16632000
105598000
155537000
183175000
Tese46.000

Selfemprine 191661000

200681.000
101509.000

Data Table (Preprocessed)

Send Automaticaly

Report

Send Automaticaly

BEE

2889882

‘marital-status=Married-civ-spouse _ relationship=Husband _marital-status=Never married

0540
0,460
0540

0328
0328
0328
0328
0328
0328
0328
0328
0328
072
o672
0328
0328
o052

_images/NaiveBayes-Misclassifications.png
£ Naive Bayes* # Scatter Plot
Fie Edit View Widget Options Help

iy

Test& Score Confusion Matix

Plot Properties
Predicted
Showlegend
] Show gridines.
Test & Score

Iris-setosa Iris-versicolor Iris-virginica

Evaluation Resuts
(® Cross vaidation

Number of folds:
Stratified

O Random sampling
Repeat train/test:

Method AUC CA F1 Precision Recall
Naive Bayes 0.925 0.900 0900 0900 0.900

Training set size:
tratified

O Leave one out

O Teston train data

O Teston test data

12 13 16 18 2 22 24
petal width

Predictons.

Target Class.
(] Probabiites

(Average over dasses)

Send Automaticaly

Report

Report

_images/Regression-Tree-Example2.png
L Regression Tree*
File Edt View Widget Options Help & Scatter Plot

5

HEHRERBLE
EEEERTAT

o “

Regression Tree Regression Tree
Viewer

5 & B N % B OB 8 B % 8 8

_images/ROCAnalysis-basic-stamped.png
0 0%

FP Rate (1-Spedificty)

_images/select-rows.png

_images/predictions.png

_images/EditDomain-stamped.png

_images/DistanceTransformation-Example.png
Distance Transformation*
Fie Edit View Widget Options Help

A ()&

Distances Distance
Transformation

ﬁ

Distances (1) Distance Matrix

Nomalzaton
(® No normaiization

O Tointerval [0, 1]

O Tomterval 11, 11

O Sigmoid function: 1/(1-+exp())

Inversion

O Noinversion
@®@x
O1-x
O max(x)-x
O

Distance Matrix
(Transformed)

Distance Matrix (Transformed)

Irs-setosa

Irs-setosa

Irs-setosa

Irs-setosa

0539,

0510,

0548,

0141

-0.300.

0332,

-0.508,

0510,

0548,

-1.001

1,085,

0510,

0,265,

0424,

0412,

0510,

0436,

0173,

0316,

-0.866.

-0.883,

0458,

0374,

a1

0265,

Distance Matrix

Irs-setosa

Irs-setosa

Irs-setosa

0510,

0548,

0141

0300]

0332,

Send Automaticaly

_images/FeatureConstructor-Example.png
o Feature Constructor*
File Edt View Widget Options Help

SRR

; o

status

@ Financial status := 0 if status=="first" else 1

iiii‘i‘ig

HHEHEHHEE
330333333

Epreretezzazes

ERENE AR

_images/venn-diagram.png

_images/K-MeansClustering-Example.png
AxisData
s x: petallength v
sy sepallength v
Score Plots.
Jtering: 0%

] Jitter continuous values

Points
Coor: (@t~
Label: |(lolabels) =
Srope: |Gameshape) ~
Seei [Gamesiz) ~
Symbol size:

opaaty:

Plot Propertes

Showlegend
[show gridines.

[Show al data on mouse hover
[Show ciass density

] Label only selected points:

ZoomSelect

B O Qf|:

nd Automatical

Save Inage Report

sepallength

7%

76

74

72

68

65

64

62

58

56

54

52

a5

a5

a4

Scatter Plot

oc1
c
s

T
petal length

o o
@ o0 o
oc
o o

Conditons.

[add Condition

Data
In: ~150 rows, 6 variables:

Out: 50 rows, 6 variables.

Report

/Add Al riables| | Remove Al

Purging
] Remove unused features

[Remove unused dasses

Send automaticaly.

_images/Distributions-Cont.png
Variable:

@ sepa lengt
@ sepalwicth
@ petallength
@ petal width.
@i

[Bin continuous variables

Group by
Diis
[show relatve frequencies

Show probabiites: (None)

Save Image.

_images/feature-constructor2-stamped.png
Feature Constructor

0if s2pal_length <6 else 1f sepal_length < 7 else 2

SelectFeatire

Select Function

lower, mid, higher

_images/SieveDiagram-stamped.png
Sieve Diagram

| x [@ survved

N=201 female
x2=456.87, p=0.000

_images/File-Google-Sheet.png
O File: |samplexis

®) URL: [ttp:poity/13127cpl

nfo

8 instance(s), 2 feature(s), 2 meta attribute(s)
Regression; numerical class.

Columns (Double click to edit)

1 spo-early @ numeric feature

2 spormid @ numeric feature

nominal meta

8 string meta

sheto | @wmec ot |

Proteas, Resp, Ribo.

_images/majority.png

_images/linear-regression.png

_images/classification-tree.png

_images/MergeData-stamped.png
eoe Merge Data
Match instances by

DataA @ DataB @
Position (index) Position (index)
Dataainfo @ DataBinfo @
101 instance(s) 16 instance(s)
17 variable(s) 6 variable(s)

Exclude instances without a maich @

(6] Report

_images/Continuize-Example2.png
File Edit View Widget Options

Muitinomial Atirbutes
(® Target or first value as base:

O Most frequent value as base

(O One attribute per vaive

O Ignore multinomial attributes
(O Remove all discrete attributes
O Treat as ordinal

(O Divide by number of values

‘Continuous Atrbutes
(® Leave them as they are:

O Normaize by span

(O Normaiize by standard deviation

Discrete Class Attrbute
® Leaveitasitis

O Treat as ordinal

(O Divide by number of values
(©) One dass per value

Value Range
O From-1t01
@ Fromoto 1

Report

Apply Automatically

Help

Continuize*

Linear Projection

@ chestpainatypical s
@ thol=fired defect

@ chestpainznon-a
Al
<

Other

Color: |) dameter narr

Opadty: Y
[Show ciass density

Shape: | Same shape

Sze: [Samesze

Automaticaly

Report

_images/PythonScript-gauss.png
Python sarpt

import random
new_data = in_data.copy()

for inst in new_data:
for f in inst.domain.attributes:
inst[£] += random.gauss (0, 0.02)

out_data = new_data
print (out_data)

Console

Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical,
Iris-virginical

_images/SelectRows-Workflow.png
o Select Rows*
File Edt View Widget Options Help

S0 (@

Box Plot (Original
Data)

By—

SelectRows Box Plot (Selected)

Data
In: ~2201 10w, 4 variables.

Out: ~325 r0ms, 3 varizbles

Report

Box Plot (Original Data)

Grouping

None
@ status
@ age
@ sex

@ survived

Box Plot (Selected)

_images/continuize.png

_images/image-viewer.png

_images/Distributions-Disc-stamped.png
@ airborne.
8 squatic
@ predator
@ toothed
@ backbone
 bresthes
@ venomous
@ fins.

@ tegs

® tail

@ domestic
@ catsize

[Bin continuous variables into 10 bins

Group by
@ tpe
[show relatve frequencies

Show probabiities: @ | (one)

Savelmage @

_images/data-info.png

_images/correspondence-analysis.png
i

_images/DistanceFile-Example.png
L Distance File*

QHEE

(Inversion)
= N &

Distance Fie

I inversion.dst

Info
150 points(s), uniebelled

Browse documentation data sets|

& Distance Map (Inversion)
Eement sortng

None =
Colors:

[e

Low:

‘

High:

Annotations

None B

ted Automatical

Save Inage Report

& Distance Map
Eement sortng

None =
Colors:

B cevlon -

Low:

High:

Annotations

None B

ed Automatical

Save Inage Report

_images/PaintData-Example.png
o Paint Data*
File Edt View Widget Options Help

7 a) (e
r—
e
Kl

Paint Data

£ —

‘Scatter Plot

kmeans

Hierarchical Clustering
i 08 06 04
Annotation
Pruning
O None.
® Maxdepth: |5 3]
Selecton
® Manual
O Heghtrato:
Omoen:
Zoom

-

T

. - + %

34 ey

o R YA

+ 4
pex
B

5
7.
;
.
W

*‘+
¥,
x5

+
3
:
o
P
d
k3

+
e
&
+#I‘ +*‘+£‘+’++
&
A
+
+
FIRhe T
T + et
+ ¥ ¥ w
AR
+ P
PA I 5
Vo
o o
+ +
& *:,++ ++#§:
¥t o *
e aiE
B Oa AR
+ };& A
L A S
. ++
i . +
g ; +
#Hih AR
HETE LptE
+ ¥ i
e ¥
ras o+
Wb
+4 s *
3 [T
Send Automatialy .
B O Qf|:

Send Automaticaly

c
C1,€1,C1, €1, C1, €1, €1, €1, €1, €1, €
crencr ey et

C1,C1, CL, €1, C1, €1, €1, €1, €1, €L, €
C1,C1, C1, €1, C1, €1, C1, €1, €1, C1, €
C1,C1, C1, €2, C1, €1, C1, €1, €1, C1, €
1,1, C1, €1, C1, €1, C1, €1, €1, C1, €
€2,€2,€2,C2,C2, €1, €2, €2, €2, €2, €2
C1,€2,C1, C2,C2, €1, €2, C1, €2, CL, €2
€2,€2,€2,C2,C1, €2, €2, €2, €1, €2, €1
C1,€2,C2,C1,C2, €2, €2, C1, €1, €2, €1
€2,€3,C2,C1,C2, €3, C2, €2, €2, C2, C:
C1,€2,C3,C1, €2, €3, C3, €2, €2, C3, €
C3,C1, C3,C3, C4, €3, C3, €2, €2, C3, €1
€3,C3,C2, €2, C3, €2, C3, €2, €3, C2, €2
cacacq

c3ca 2

C4,4,C4, 04, C4, C3,C4, €3, €4, C4
C4,4, G4y c4,C4

C3,C4, C4, €3, C3, €2, C4, C4, €2, C4, €
C4,C2, C3, C2, C4, C4,C4, C4, €2, C4, C+
C4,C2, C3, C4, C3, €3, C2, C4, C4, €2, C+
C3,C4, C3, C4, C3, €3, C4, C4, C4, C4, C+

C3,C4, C4, €3, C3, €3, C2, €4, C3, C4,C:
C4,C4, C2, C4, C4, C4,C2, C4, €3, C4, €+
C4,C4, €2, C2, C1, €3, C3, €4, C4, C3, C:

C3,C2, C4, C4, C2, C4, C3, €2, C4, C3, C:

C2,C2, C3, C4, C4, C4, C4, C4, €2, C4, C+
C1,C4, C4, C4, C2, C4, C4, C4, €2, C4, C+
C4,C4, C3, C4,C4, €3,C3, C4, €3, C4, €

Scatter Plot

_images/load-classifier.png

_images/PythonScript-filtering.png
@

Python Script Data Table

Python sarpt

from Orange.data import Domain, Table

domain = Domain([attr for attr in in_data.domain.attributes
if attr.is_continuous or len(attr.values)
<= 51, in_data.domain.class_vars)

out_data = Table(domain, in_data)

print (out_data.domain)

filtering.

Console

1, 1,0, 1, mammall,
1, 0, 1, o, insect],
1, 1, 0, 1, mammall,
o, 0, 0, o,

invertebrate],

0, 1, 1, 0, 1, 1, bird]
>>>

Running script:

[hair, feathers, eqggs, milk, airborne, aquatic, predator,
toothed, backbone, breathes, venomous, fins, tail,
domestic, catsize | typel

>>>

_images/MergeData-Example.png
9 untitled

File (20O - images)

eoe Merge Data
Match nstances by
Data A DataB
| @name B | Sname B
Dsta A lnfo Dsta B nfo
101 instance(s) 15 instance(s)
17 variables) 6 variable(s)

Merged Data — Data
Exclude instances without a match

Data Table

Report
eoe Data Table
16 Instancas (no missing valles) type name. . hair feathe
16 features (no missing values) image
Discrete class with 7 values (no https/fiimgu... [1 0
missing values) http://iimgu... |0 0
2 meta attributes (no missing httpsfiimgu.. |1)
() hitp:/fiimgu... |1 [
http:/fiimgu... | 0)
Variables http:/fiimgu... | 0 0
‘Show variable labels (if present) httpi/fiimgu... |0 1
|| Visualize continuous values ° http:/fiimgu... |1 [
Color by instance classes. http:/fiimgu... | 0 0
. http:/fiimgu... | 0 1
e http:/fiimgu... | 0 1
Select full rows http/fiimgu.. | 0 o
http/fiimgu... |1)
Restore O htpilfimgu. |0 5
Report https/fiimgu... |1 0
Send Automatically

_images/Scatterplot-ClassDensity.png
‘Show legend
[show gridines.
[show al data on mouse hover

_images/ConfusionMatrix-stamped.png
Predicted

Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 0 0

a 3

H a5

52 a8

_images/LoadClassifier-stamped.png
Load Classifier

_images/PCAExample.png
Fie Edit View Widget Options Help

Proportion of variance

Scatter Plot (PCA)

Scatter Plot

‘Show legend
] show gridines
Sz [] Show all data on mouse hover
[show gridines. (] Show dlass density
oo B e
ey
[] Label only selected points

Q

Q

Send Automaticaly

Save Image Report

Send Automaticaly

Save Image Report

_images/DistanceFile-stamped.png
Distance e
o

1ris_inversion.dst

nfo @
150 ponts(s), unizbeled

Browse documentation data sets| @

_images/RegressionTreeViewer-stamped.png

_images/tree-viewer-stamped.png
L Tree Viewer

Tree

9nodes, Sleaves
Display

Zoom:

width:

Depth: | 4levels

Edge width: | Relative to parent v

Terget dass: None.

Save Image @)

Report @)

- o
Iris-setosa
33.3% 50/150 g
petal length
21900 " < 1.900
Iris-versicolor
50.0%, 50/100 ©
petal width
<1700 > 1.700
< 4.900 > 4.900
Iris-virginica
667%4/6 @
petal width
.

_images/stochastic-gradient-descent.png

_images/linear-regression1-stamped.png
No reguirization

O Ridge regression (L2)

Apply Automatically

_images/map-stamped.png
© Map - o x

Map

wap Openstecttap +
Ltiude Blattce ~
Longiuce: Blongiude ~
Overlay
Target: (None) e
Ponts
Color: (same color) ¥
Labe
Shape:
Size: (samesize) ¥
Oty 100%
Symbol size: 100%
Sterng 0%
°
(]

° 3

e

Save Iage Fruiul & Fun

_images/map-classification.png
5l

£l

“DEEVI@ER

Widget

Map Data Table

[Data Table
Info

Sinstances (no missing values)
4 features (no missing values)
No target variable.
Nometa atirbutes.

[Show variable labeks (fpresent)
[Visualize continuous values
[Color by instance dlasses

Datetime Type Lon

2012-08-22 17:40:00 Public Drunkenness.
2013-02-23 01:37:00 Liquor Law Violations.
2010-01-18 040300 Liquor Law Violations.
2013-03-09.02:23:00 Liquor Law Violations.
2012-05-16 17:16:00 Liquor Law Violations.

75176
75188
75188
75189
75179

Chssification Tree

ATETRTLIE

Backand white
@t -
@Lon -

B4 send selection Automatically

‘Save Image

Family Abuse
Gambling
Homicide
LiguorL__ons.
Prositution
PublicD...ess

Teatiet | © Openstieethap, Orange - Data Mining Fruitul & Fun

39959
39960
39961
39958
39958

_images/K-MeansClustering-Example2.png
Variable

@ sepal length
@ sepal wicth
@ petallength
@ petalwidth

Cluster

s

Predsion
2

Bin continuous variables nto 10 bins

Growp by

ins

[show relatve frequencies

Show probabiites: (None)

Save Inage

m

Avalable Varables

Fiter

© Irssetosa
® Iis-versicolor

Isvirginica

Select Columns

Features

@ sepal length
@ sepal wicth
@ petallength
@ petalwidth

Target Varizble

iis

Meta Atirbutes

3

b Automaticaly

_images/ScatterPlotExample-Classification.png
File

Edit

Widget Options _Help

Classification Tree

Scatter Plot*

Classification Tree

Viewer

Classification Tree Viewer

Opacity:

Plot Properties
Showlegend

[show gridines.

[Show al data on mouse hover

[Show ciass density

[Label only selected points:

Q

Report

_images/TestLearners.png
Evaluaton Resuts

Method AUC CA F1 Precision Recall
NaveBayes 0697 0769 0579 0704 0452
Clasification Tree 0672 0783 0516 0927 0357
Logistic Regression 0700 0776 0583 0732 0484
svm 0547 0554 0433 0367 0526

O Leave one out
O Teston train data
O Teston test data

Target Class.

(Average over dasses)

Report

_images/discretize.png

_images/python-script.png

_images/Pythagorean-Tree-scatterplot-workflow.png

_images/Save-Workflow.png
o Save Data*
File Edt View Widget Options Help

o)

Scatter Plot

3

Opacity:

PlotPropertes

[¥] show legend

[show gridines.

[Show al data on mouse hover
Show class density

(] Label only selected points

Q

Send Automaticaly

_images/CN2-Viewer-Example1.png
@
i} -
File N2 Rule Viewer —- CN2 Rule Viewer - o x
1 sexcfemale AND statuszthird AND agezadult ~ survived=yes 7:9 -000 3
2 sexefemale AND status=second AND agezadult ~ survived=yes 8:9 -000 3
J 3 sextfemale AND status=second ~ survived=no. 1154,14] 919 0414 2
Name 4 status=crew AND sex=female — survived=yes (3,200 16:84 0559 2
N2 e e 5 stotus=second — survived=yes __[13,80] 15:85 0584 1
e e 6 sexefemale AND status=third AND age=adult ~ survived=no 1387,73] 8:16 0640 3
oy O 7 sexcfemale AND status=first — survived=yes _[4,140] 3:97 0183 2
O rartred | | O weigted v: GE 8 statuszthird AND agezadult ~ survived=yes 10,51 14:85 -000 2
9 status=crew ~ survived=no 1670, 192] :2 0765 1
sk Rule search 10 sexsfemale AND statussfirst — survived=no 135,131 72:28 0843 2
Evaluation measure: |Entropy. - n status=first ~ survived=no 1118, 571 67:33 -0810 1
Beam width: sk 2 agesaduit ~ survived=no 117,141 55:45 0993 1
3 TRUE ~ survivedzno 189,76 54:46 -099% 0
Rule fitering
Minimum e coverage: 1 Restore orignal order ompact view Report
Maximum rue length:

Statstia soifcance ol
O et 100 ¢

Reatve sgrfcance e
O Garent o 100 ¢

Report

Apply Automatical

_images/Save-stamped.png

_images/Concatenate-stamped.png
DomanMergng @

Vhen thereis o pinary table, the domain shoud be:
Urion ofatrbutes sppearing nal tables

O Intersecton of atrbutes i f tables

The resitng tabe wil have a dassonly i there s 1o

confict between nput dosses.

Source dentiicaton @

[Append data source IDs

Festure name: | Source ID

Place: Class attrbute:

© Report @ Apply Automatically

_images/DistancesExample.png
Fie Edit View Widget Options Help

Distance Map

(E?HA &

Distances Hierarchical
Clustering

tow: [

High:

Annotations

None:

Send Selected Automatcaly

SaveImege | | Report

Hierarchical Clustering

3

: | Meta variable

Send Automaticaly

Save Image Report

_images/impute-stamped.png
@ aspirstion

@ num-of-doors
 body-stle

@ drive-wheels
@ engine-location
@ wheel-base

@ length

@ vidth

@ height > drop
@ curb-weight

O Defauit (sbove)
Dontimpute

Average/Most frequent

_images/save-classifier.png

_images/ROC-Comparison.png
1 1
0 0
0 3o
0 0
. .
0 Tz T T s T oz T T s T
ot (1 Speciaty) ot (1 Speciaty)
:
0
' / ‘ |
0.6 . %\
0
.

[3

FP Rate (1-Specficty)

o

0 0z [3 o T
FP Rate (1-Specficty)

_images/LogisticRegression-stamped.png
Apply Automatically

_images/StochasticGradientDescent-example1.png
Stochastic Gradient Descent*

File
=
Nearest Neighbors ~ ?
Name
Nearest Neighbors
Neghbors:
Number of eighbors: sk
vetic: Euddean s
weight: Uniform s
Report Apply Automatialy

P

Name.

Linear Regression

Stochastic Gradient
Descent

Linear Regression

Nearest Neighbors

Linear Regression

Reguiarization
(® Noreguiarization

O Ridge regression (L2)
O Lasso regression (L1)

O Eistic net regression

Regularization strength:

n

Apha:
Blstic net mixing:

L L2

067:0.33

Apply Automatically

=

Predictions Data Table

Name.

=
Info
506 nstances (no missing values)

13 features (no missing values)

Continuous target variable (no missing
values)

3 meta attrbutes (no missing values)

Variables

on varisbe abels (f present)

] Visualize continuous values

Color by instance dasses.

56D Regression

Loss Functon
(® Squaredloss.

O Huber

O Epsion insensitive.

O squared epsion insensitive.

=010

Peralty

© Absolute norm (L1)
®) Eucidean nom (.2)
O Basticnet (L1andL2)

o [oser]

Ltrato: 0,15

Learning Rate.
O constant
(® Inverse scaling

Number of teratons:

Apply Aut

tomaticaly

Data Table - =

MEDV SGD Regression Linear Regression Nearest Neighbors A

T+ R 0715 30004 21780
2 i 24345 25026 200
s s 30957 30568 25360
4 [s 20414 28607 26060
N 28884 2704 2710
o Dm0 25666 25256 2710
. 23007 2002 20880
s i 19865 1953 19.100
o teso Tness 11524 18400
0 [a0 19302 18920 19480
1 a0 19569 1899 19280
1 [a0 21813 21587 2000
1 a0 21026 20307 24340

1a EEE Gnaml narr 1055 e v
< >

_images/linear-projection.png

_images/RegressionTree-stamped.png
@ Apply Automatically

